欢迎登录材料期刊网

材料期刊网

高级检索

有机-无机杂化体异质结太阳电池以无机半导体纳米晶作为电子受体,共轭聚合物作为电子给体,是近年来的一个研究热点.在设计上,有机-无机杂化材料兼具有机材料的柔性、结构多样性、易加工和无机材料载流子迁移率高、稳定性好的优势,具有良好的发展前景.介绍了有机-无机杂化体异质结太阳电池的结构、工作原理,从共轭聚合物、无机半导体纳米材料以及电池制备工艺3个方面综述了近年来国内外研究现状,主要包括有机-无机杂化体异质结太阳电池中常用共轭聚合物结构、带隙,无机纳米晶种类、形貌、表面改性以及有源层厚度、形貌调控等内容.着重介绍了基于CdSe、TiO2、PbS类纳米晶的太阳电池.最后讨论了有机-无机杂化体异质结太阳电池目前存在的问题和发展方向.

参考文献

[1] Darling S B .Block Copolymers for Photovoltaics[J].Energy & Environmental Science,2009,2
[2] Krebs F C,Nielsen T D,Fyenbo J,et al.Manufacture,Integration and Demonstration of Polymer Solar Cells in a Lamp for the “ Lighting Africa” Initiative[J].Energy & Environmental Science,2010(3):512-525.,2010.
[3] Taranekar P,Qiao Q,Jiang J,et al .Hyperbranched Conjugated Polyelectrolyte Bilayers for Solar-Cell Applications[J].Journal of the American Chemical Soc&ty,2007,129
[4] Qiao Q,Xie Y,McLeskey J T .Organic/Inorganic Polymer Solar Cells Using a Buffer Layer from All-Water-Solution Processing[J].The Journal of Physical Chemistry C,2008,112
[5] Gao F,Ren S Q,Wang J P.The Renaissance of Hybrid Solar Cells:Progresses,Challenges,and Perspectives[J].Energy & Environmental Science,2013(6):2 020-2 040.,2013.
[6] You J B,Dou L T,Yang Y,et al.A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency[J].Nature Communications,2013,DOI:10.1038/ncomms2411.,2013.
[7] Wright M,Uddin A .Organic-Inorganic Hybrid Solar Cells:A Comparative Review[J].Solar Energy Materials and Solar Cells,2012,107
[8] Xu T T,Qiao Q.Conjugated Polymer-Inorganic Semiconductor Hybrid Solar Cells[J].Energy & Environmental Science,2011(4):2 700-2 720.,2011.
[9] Wei H T,Zhang H,Sun H Z,et al.Preparation of Polymer-Nanocrystals Hybrid Solar Cells Through Aqueous Approaches[J].Nano Today,2012(7):316-326.,2012.
[10] TangAW,QuSC,TengF,etal.Recent Developments of Hybrid Nanocrystal/Polymer Bulk Heterojunction Solar Cells[J].Journal of Nanoscience and Nanotechnology,2011 (11):9 384-9 394.,2011.
[11] Greenham N C,Peng X G,Alivisatos A P .Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity[J].Physical Review B,1996,54
[12] Wendy U Huynh,Janke J Dittmer,Paul Alivisatos A .Hybrid Nanorod-Polymer Solar Cells[J].Science,2002,295
[13] Sun B G,Marx E,Greenham N C.Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers[J].Nano Letters,2003(3):961-963.,2003.
[14] Liu Z,Sun Y,Yuan J,et al .High-Efficiency Hybrid Solar Cells Based on Polymer_ PbSxSe1-x Nanocrystals Benefiting from Vertical Phase Segregation[J].Advanced Materials,2013,25
[15] Yamanari T,Taima T,Sakai J,et al .Origin of the Open-Circuit Voltage of Organic Thin-Film Solar Cells Based on Conjugated Polymers[J].Solar Energy Materials and Solar Cells,2009,93
[16] Beek W J E,Wienk M M,Janssen R A J .Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer[J].Advanced Materials,2004,16
[17] Shen L,Zhu G H,Guo W B,et al .Performance Improvement of TiO2/P3HT Solar Cells Using CuPc As a Sensitizer[J].Applied Physics Letters,2008,92
[18] Soci C,Hwang I W,Heeger A,et al .Photoconductivity of a Low-Bandgap Conjugated Polymer[J].Advanced Functional Materials,2007,17
[19] Liang Y,Xu Z,Xia J,et al .For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J].Advanced Materials,2010,22
[20] Yue W,Zhao Y,Shao S,et al .Novel NIR-Absorbing Conjugated Polymers for Efficient Polymer Solar cells:Effect of Alkyl Chain Length on Device Performance[J].Journal of Materials Chemistry,2009,19
[21] Zhang Y,Li Z,Ouyang J,et al .Hole Transfer from PbS Nanocrystal Quantum Dots to Polymers and Efficient Hybrid Solar Cells Utilizing Infrared Photons[J].Organic Electronics,2012,13
[22] Guchhait A,Rath A K,Pal A J .To Make Polymer:Quantum Dot Hybrid Solar Cells NIR-Active By Increasing Diameter of PbS Nanoparticles[J].Solar Energy Materials and Solar Cells,2011,95
[23] Reynolds L X,Lutz T,Dowland S,et al.Charge Photogeneration in Hybrid Solar Cells:A Comparison Between Quantum Dots and in Situ Grown CdS[J].Nanoscale,2012(4):1 561-1 564.,2012.
[24] Ren S,Chang L Y,Lim S K,et al.Inorganic-Olrganic Hybrid Solar Cell:Bridging Quantum Dots to Conjugated Polymer Nanowires[J].Nano letters,2011 (11):3 998-4 002.,2011.
[25] Jeltsch K F,Schadel M,Bonekamp J B,et al .Efficiency Enhanced Hybrid Solar Cells Using a Blend of Quantum Dots and Nanorods[J].Advanced Functional Materials,2012,22
[26] Zhou R,Zheng Y,Qian L,et al.Solution-Processed Nanostructured Hybrid Solar Cells with Broad Spectral Sensitivity and Stability[J].Nanoscale,2012(4):3 507-3 514.,2012.
[27] Celik D,Krueger M,Veit C,et al .Performance Enhancement of CdSe Nanorod-Polymer Based Hybrid Solar Cells Utilizing a Novel Combination of Post-Synthetic Nanoparticle Surface Treatments[J].Solar Energy Materials and Solar Cells,2012,98
[28] Dayal S,Kopidakis N,Olson D C,et al.Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency[J].Nano Letters,2009(10):239-242.,2009.
[29] Kuo C Y,Su M S,Chen G Y,et al .Annealing Treatment Improves the Morphology and Performance of Photovoltaic Devices Prepared from Thieno【3,4-c】Pyrrole-4,6-Dione-Based Donor/Acceptor Conjugated Polymers and CdSe Nanostructures[J].Energy & Environmental Science,2011,4
[30] Wu Y,Zhang G.Performance Enhancement of Hybrid Solar Cells Through Chemical Vapor Annealing[J].Nano Letters,2011(10):1 628-1 631.,2011.
[31] Gur,Fromer N A,Chen C P,et al.Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals[J].Nano Letters,2006 (7):409-414.,2006.
[32] Yang J,Tang A,Zhou R,et al .Effects of Nanocrystal Size and Device Aging on Performance of Hybrid Poly (3-Hexylthiophene):CdSe Nanocrystal Solar Cells[J].Solar Energy Materials and Solar Cells,2011,95:CdSe Nanocrystal Solar Cells[J].Solar Energy Materials and Solar Cells,2011,95:476-482.,2011.
[33] Chen H C,Lai C W,Wu I C,et al .Enhanced Performance and Air Stability of 3.2% Hybrid Solar Cells:How the Functional Polymer and CdTe Nanostructure Boost the Solar Cell Efficiency[J].Advanced Materials,2011,23
[34] Beek W JE,Wienk M M,Janssen R A J .Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles[J].Advanced Functional Materials,2006,16
[35] Li F,Chen W,Yuan K,et al .Photovoltaic Performance Enhancement in P3HT/ZnO Hybrid Bulk-Heterojunction Solar Cells Induced by Semiconducting Liquid Crystal Ligands[J].Organic Electronics,2012,13
[36] Oosterhout S D,Wienk M M,Van Bavel S S,et al.The Effect of Three-Dimensional Morphology on the Efficiency of Hybrid Polymer Solar Cells[J].Nature Materials,2009 (8):818-824.,2009.
[37] Wu J,Yue G,Xiao Y,et al.An Ultraviolet Responsive Hybrid Solar Cell Based on Titania/poly(3-Hexylthiophene)[J].Scientific reports,2013(3):1 283.,2013.
[38] Hsu C W,Wang L,Su W F .Effect of Chemical Structure of Interface Modifier of TiO2 on Photovoltaic Properties of Poly (3-Hexylthiophene)/TiO2 Layered Solar Cells[J].Journal of Colloid and Interface Science,2009,329(1):182-187.,2009.
[39] Bouclé J,Chyla S,Shaffer M,et al .Hybrid Solar Cells from a Blend of Poly (3-hexylthiophene) and Ligand-Capped TiO2 Nanorods[J].Advanced Functional Materials,2008,18(4):622-633.,2008.
[40] ZengTW,Lin Y Y,Lo H H,et al .A Large Interconnecting Network Within Hybrid MEH-PPV/TiO2 Nanorod Photovoltaic Devices[J].Nanotechnology,2006,17(21):5 387-5 392.,2006.
[41] Lin Y Y,Chu T H,Chen C W,et al .Improved Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Photovoltaic Devices by Interface Modification[J].Applied Physics Letters,2008,92(5):053 312.,2008.
[42] Lin Y Y,Chu T H,Li S S,et al .Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells[J].Journal of the American Chemical Society,2009,131
[43] Yu Y Y,Chen W C,Ko Y H,et al .Preparation and Characterization of P3HT:CuInSe2:TiO2 Thin Film for Hybrid Solar Cell Applications[J].Thin Solid Films,2011,520
[44] Kumar Dixit,Madan S,Kaur S,et al .Enhancement of Efficiency of a Conducting Polymer P3HT:CdSe/ZnS Quantum Dots Hybrid Solar Cell by Adding Single Walled Carbon Nanotube for Transporting Photogenerated Electrons[J].Journal of Renewable and Sustainable Energy,2013,5(3):033 107.,2013.
[45] Tan FR,QuSC,WangZG,etal .Synthesis of Silver Quantum Dots Decorated TiO2 Nanotubes and Their Incorporation in Organic Hybrid Solar Cells[J].Journal of Nanoparticle Research,2013,15
[46] Liu K,Bi Y,Qu S,et al.Efficient Hybrid Plasmonic Polymer Solar Cells with Ag Nanoparticles Decorated TiO2 Nanorods Embedded in the Active Layer[J].Nanoscale,2014,DOI:10.1039/C4NR00030G.,2014.
[47] Huynh W U,Dittmer J J,Alivisatos A P,et al .Charge Transport in Hybrid Nanorod-Polymer Composite Photovoltaic Cells[J].Physical Review B,2003,67
[48] Kim Y,Choulis S A,Nelson J,et al .Device Annealing Effect in Organic Solar Cells with Blends of Regioregular Poly(3-Hexylthiophene) and Soluble Fullerene[J].Applied Physics Letters,2005,86
[49] Li G,Yao Y,Yang H,et al .“ Solvent Annealing” Effect in Polymer Solar Cells Based on Poly (3-Hexylthiophene) and Methanofullerenes[J].Advanced Functional Materials,2007,17
[50] Müller C,Wang E,Andersson L M,et al .Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative[J].Advanced Functional Materials,2010,20
[51] Günes S,Neugebauer H,Sariciftci N S .Conjugated PolymerBased Organic Solar Cells[J].Chemical reviews,2007,107
[52] Sun B,Grccnham N C.Improved Efficiency of Photovoltaics Based on CdSe Nanorods and Poly (3-Hexylthiophene) Nanofibers[J].Physical Chemistry Chemical Physics,2006 (8):3 557-3560.,2006.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%