光催化材料在能源转换和环境净化领域具有重要的应用前景.实现光催化技术的实际应用,其关键是开发出高效的光催化材料,高效的光催化材料需要满足带隙与太阳光谱匹配、导价带能级位与反应物电极电位匹配、高量子效率和光化学稳定等性能要求.综述了新型光催化材料开发策略及研究进展,重点总结了包含能量转换效率提高方法、光催化机理认识与表征手段等光催化领域材料发展的新趋势.分析了提高光催化能量转换效率的关键所在及开展新型光催化材料研究工作的重要性,展望了了该领域的未来发展方向.
参考文献
[1] | Kubacka A;Fernández-García M;Colón G .Advanced Nanoarchitectures for Solar Photocatalytic Applications[J].Chemical Reviews,2011,112:1555-1614. |
[2] | Polman A;Atwater H A .Photonic Design Principles for UltrahighEfficiency Photovoltaics[J].Nature Materials,2012,11:174-177. |
[3] | Bruce D. Alexander;Pawel J. Kulesza;Iwona Rutkowska .Metal oxide photoanodes for solar hydrogen production[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2008(20):2298-2303. |
[4] | Tilley S D;Cornuz M;Sivula K.Light-Induced Water Splitting with Hematite:Improved Nanostructure and Iridium Oxide Catalysis[J].Angewandte Chemie,2010(122):6549-6552. |
[5] | Kazuhiro Sayama;Nini Wang;Yugo Miseki .Effect of Carbonate Ions on the Photooxidation of Water over Porous BiVO4 Film Photoelectrode under Visible Light[J].Chemistry Letters,2010(1):17-19. |
[6] | Luo W;Yang Z;Li Z et al.Solar Hydrogen Generation from Seawater with a Modified BiVO4 Photoanode[J].Energy & Environmental Science,2011,4:4046-4051. |
[7] | Li M;Zhao L;Guo L .Preparation and Photoelectrochemical Study of BiVO4 Thin Films Deposited by Ultrasonic Spray Pyrolysis[J].International Journal of Hydrogen Energy,2010,35:7127-7133. |
[8] | Su J;Guo L;Bao N et al.Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting[J].Nano Letters,2011,11:1928-1933. |
[9] | Long M;Cai W;Kisch H .Visible Light Induced Photoelectrochemical Properties of n-BiVO4 and n-BiVO4/p-Co3O4[J].The Journal of Physical Chemistry C,2008,112:548-554. |
[10] | Liu H;Yuan J;Shangguan W et al.Visible-Light-Responding BiYWO6 Solid Solution for Stoichiometric Photocatalytic Water Splitting[J].The Journal of Physical Chemistry C,2008,112:8521-8523. |
[11] | Zhang M;Luo W;Li Z et al.Improved Photoelectrochemical Responses of Si and Ti Codoped α-Fe2O3 Photoanode Films[J].Applied Physics Letters,2010,97:042105. |
[12] | Luo W;Liu B;Li Z et al.Stable Response to Visible Light oflnGaN Photoelectrodes[J].Applied Physics Letters,2008,92:262110. |
[13] | Luo W;Li Z;Jiang X.Correlation between the Band Positions of (SrTiO3)1-x @ (LaTiO2 N)x Solid Solutions and Photocatalytic Properties under Visible Light Irradiation[J].Physical Chemistry Chemical Physics,2008(10):6717-6723. |
[14] | Naito K;Tachikawa T;Fujitsuka M et al.Single-Molecule Fluorescence Imaging of the Remote TiO2 Photocatalytic Oxidation[J].The Journal of Physical Chemistry(B)Materials Surfaces Interfaces & Physical,2005,109:23138-23140. |
[15] | Tachikawa T;Wang N;Yamashita S et al.Design of a Highly Sensitive Fluorescent Probe for Interfacial Electron Transfer on a TiO2 Surface[J].Angewanute Chemie International Edition,2010,49:8593-8597. |
[16] | Chen T;Feng Z;Wu G et al.Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2 by in Situ Fourier Transform IR and Time-Resolved IR Spectroscopy[J].The Journal of Physical Chemistry C,2007,111:8005-8014. |
[17] | Tang JW;Durrant JR;Klug DR .Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry[J].Journal of the American Chemical Society,2008(42):13885-13891. |
[18] | Tang J;Cowan A J;Durrant J R et al.Mechanism of O2 Production from Water Splitting:Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO2 Films and Factors Limiting O2 Production[J].The Journal of Physical Chemistry C,2011,115:3143-3150. |
[19] | Cowan A J;Barnett C J;Pendlebury S R et al.Activation Energies for the Rate-Limiting Step in Water Photooxidation by Nanostructured α-Fe2O3 and TiO2[J].Journal of the American Chemical Society,2011,133:10134-10140. |
[20] | Zhang J;Xu Q;Feng Z et al.Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2[J].Angew Chem Int Ed,2008,47:1766-1769. |
[21] | Yoshida, M;Yamakata, A;Takanabe, K;Kubota, J;Osawa, M;Domen, K .ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen Evolution under Irradiation[J].Journal of the American Chemical Society,2009(37):13218-13219. |
[22] | Zhao Z;Luo W;Li Z et al.Density Functional Theory Study of Doping Effects in Monoclinic Clinobisvanite BiVO4[J].Physics LettersA,2010,374:4919-4927. |
[23] | Li M;Luo W;Liu B et al.Remarkable Enhancement in Photocurrent of Ino.2o G0.80.s0 N Photoanode by Using an Electrochemical Surface Treatment[J].Applied Physics Letters,2011,99:112108. |
[24] | Luo W;Li Z;Yu T et al.Effects of Surface Electrochemical Pretreatment on the Photoelectrochemical Performance of Mo-Doped BiVO4[J].The Journal of Physical Chemistry C,2012,116:5076-5081. |
[25] | Matthew W. Kanan;Daniel G. Nocera .In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co~(2+)[J].Science,2008(5892):1072-1075. |
[26] | Pilli S K;Furtak T E;Brown L D.Cobalt-Phosphate (CoPi) Catalyst Modified Mo-Doped BiVO4 Photoelectrodes for Solar Water Oxidation[J].Energy & Environmental Science,2011(04):5028-5034. |
[27] | Barroso M;Cowan A J;Pendlebury S R et al.The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of ot-Fe2O3 toward Water Oxidation[J].Journal of the American Chemical Society,2011,133:14868-14871. |
[28] | Seabold J A;Choi K S .Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode[J].Chemistry of Materials,2011,23:1105-1112. |
[29] | Wang X;Maeda K;Thomas A et al.A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J].Nature Materials,2009,8:76-80. |
[30] | Zhong D K;Gamelin D R .Photoelectrochemical Water Oxidation by Cobalt Catalyst ("Co-Pi")/αt-Fe2O3 Composite Photoanodes:Oxygen Evolution and Resolution of a Kinetic Bottleneck[J].Journal of the American Chemical Society,2010,132:4202-4207. |
[31] | Wang P;Huang B;Qin X et al.Ag@AgCl:A Highly Efficient and Stable Photocatalyst Active under Visible Light[J].Angew Chem Int Ed,2008,47:7931-7933. |
[32] | Torimoto T;Horibe H;Kameyama T et al.Plasmon-Enhanced Photocatalytic Activity of Cadmium Sulfide Nanoparticle Immobilized on Silica-Coated Gold Particles[J].The Journal of Physical Chemistry Letters,2011,2:2057-2062. |
[33] | Jung J H;Kobayashi H;van Bommel K J.Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template[J].Chemistry of Materials,2002(14):1445-1447. |
[34] | Yu J;Su Y;Cheng B .Template-Free Fabrication and Enhanced Photocatalytic Activitv of Hierarchical Macro-/Mesoporous Titania[J].Advanced Fanctional Materials,2007,17:1984-1990. |
[35] | Kondo Y;Yoshikawa H;Awaga K;Murayama M;Mori T;Sunada K;Bandow S;Iijima S .Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres[J].Langmuir: The ACS Journal of Surfaces and Colloids,2008(2):547-550. |
[36] | Hua Gui Yang;Cheng Hua Sun;Shi Zhang Qiao;Jin Zou;Gang Liu;Sean Campbell Smith;Hui Ming Cheng;Gao Qing Lu .Anatase TiO2 single crystals with a large percentage of reactive facets[J].Nature,2008(7195):638-641. |
[37] | Chen, J.S.;Tan, Y.L.;Li, C.M.;Cheah, Y.L.;Luan, D.;Madhavi, S.;Boey, F.Y.C.;Archer, L.A.;Lou, X.W. .Constructing hierarchical spheres from large ultrathin anatase TiO _2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage[J].Journal of the American Chemical Society,2010(17):6124-6130. |
[38] | Xi, GC;Ye, JH .Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties[J].Chemical communications,2010(11):1893-1895. |
[39] | Yan S;Wan L;Li Z et al.Facile Temperature-Controlled Synthesis of Hexagonal Zn2GeO4 Nanorods with Different Aspect Ratios toward Improved Photocatalytic Activity for Overall Water Splitting and Photoreduction of CO2[J].Chemical Communications,2011,47:5632-5634. |
[40] | Zhang M;Chen C;Ma W.Visible-Light-Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of DyeSensitized TiO2 and TEMPO[J].Angewandte Chemie,2008(120):9876-9879. |
[41] | Zhang M;Wang Q;Chen C et al.Oxygen Atom Transfer in the Photocatalytic Oxidation of Alcohols by TiO2:Oxygen Isotope Studies[J].Angew Chem Int Ed,2009,48:6081-6084. |
[42] | Wang Q;Zhang M;Chen C et al.Photocatalytic Aerobic Oxidation of Alcohols on TiO2:the Acceleration Effect of a Brφnsted Acid[J].Angew Chem Int Ed,2010,49:7976-7979. |
[43] | Chen C;Ma W;Zhao J.Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation[J].Chemical Society Reviews,2010(39):4206-4219. |
[44] | Lang X;Ji H;Chen C.Selective Formation of Imines by Aerobic Photocatalytic Oxidation of Amines on TiO2[J].Angew Chem Int Ed,2011(50):3934-3937. |
[45] | Liu Q;Zhou Y;Kou J et al.High-Yield Synthesis of Ultralong and Ultrathin Zn2 GeO4 Nanoribbons toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel[J].Journal of the American Chemical Society,2010,132:14385-14387. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%