欢迎登录材料期刊网

材料期刊网

高级检索

随着现代技术的不断发展和学科间的交叉融合以及外场技术在冶金过程中的应用,形成了一门新的冶金交叉学科———“特殊冶金”。“自蔓延冶金”是特殊冶金学科分支的重要研究领域之一,自蔓延冶金利用反应体系自身快速释放的化学反应热可快速形成一个超高瞬变温场,从而实现了对高熔点金属和化合物的快速、高效制备。系统论述了高熔点超细金属粉体、超细硼化物陶瓷粉体的生产、应用现状以及自蔓延冶金在高熔点超细金属粉体、超细硼化物陶瓷粉体制备方面的最新研究成果。此外,目前钛合金、铜铬难混溶合金的应用现状及其制备过程中存在着生产成本高、工艺流程长、操作复杂等缺点,介绍了基于铝热还原的多级深度还原法直接制备钛基合金和铜铬难混溶合金的最新研究进展。

With the continuous development of modern technology and the intersection between different disciplines, as well as the application of outfield technology in metallurgical process, a new interdisciplinary subject—“special metallurgy” was formed. Self-propagating high-temperature synthesis ( SHS) metallurgy, as a branch of special metallurgy, is one of the most important research fields. Based on the chemical reaction heat that immediately released by the reaction system itself, SHS-Metallurgy method can quickly form an ultra high transient temperature field, thus realizing fast and efficient preparations of the high melting point metals and compounds. This paper systematically discusses the productions and present application situations of the high melting point ultrafine metal powder and ultra-fine boride ceramic powder, as well as the latest research results of SHS-Metallurgy on the preparations of the high melting point ultrafine metal powder and ultra-fine boride ceramic powder. Moreover, the productions and present application situations of titanium-based alloys and copper-chromium immiscible alloys, have some disadvantages such as high cost, long process and complex operation. Herein, the latest research results on aluminothermic reduction-multistage depth reduction in the direct preparations of titanium-based alloys and copper-chromium immiscible alloys are introduced.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%