钒已被广泛地应用于长条钢产品,诸如锻造制品、螺纹钢筋、型材、管材、钢轨、弹簧和盘条.钒在长条钢产品中是优选的添加剂,因为与铌和钛相比,它的碳氮化合物在奥氏体中的溶解度要高得多,并对碳含量的敏感性较小.钒能起到析出强化和晶粒细化的作用,从而得到强度和韧性的良好配合.通过控制氮的含量,能使析出强化最大化,氮随钒的优先析出也使氮应变时效的危险性降至很小.此外,钒还能在较低含碳量情况下得到所期望的强度,较低的含碳量对延性和焊接性有利.再者,对淬火回火钢来说,钒有利于回火抗力,并起到二次硬化作用.细小的钒碳化合物还对易扩散的氢起到有力的捕集点作用.钒的碳氮化合物相对较低的溶解温度,得以有效地利用能源和采用低的加热温度.传统的热轧或热锻,一般采用高的终加工温度,这对生产长条钢产品是不可避免的,而对钒微合金钢来说却可以用来获得所需要的力学性能和服役功能.此外,钒微合金化钢的性能对加工处理条件的变化相对地不怎么敏感.
参考文献
[1] | Turkdogen E T.Causes and effects of nitride and carbide precipitation during continuous casting[A].Pittsburgh,PA,USA,1987:61-75. |
[2] | Zajac S;Legneborg R;Siwecki T.The role of nitrogen in microalloyod steels[A].Pittsburgh,USA,1995:321-340. |
[3] | Glodowski R J .An empirical prediction model of the incremental strengthening of ferrite/pearlite steels with additions of vanadium and nitrogen,with emphasis on the effective nitrogen level[J].International Journal of Metallurgical Engineering,2013,2(01):56-61. |
[4] | Held J F.Some factors influence the mechanical properties of microalloyed steel[A].Colorado,1986:175-188. |
[5] | T. N. Baker .Processes, microstructure and properties of vanadium microalloyed steels[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2009(9):1083-1107. |
[6] | Pickering F B;Garbaz B .Strengthening in pearlite formed from thermomechanically processed austenite in vanadium steels and implications for toughness[J].Materials Science and Technology,1989,5(03):227-237. |
[7] | Jaiswal S;McIvor I D .Metallurgy of vanadium-microalloyed,high-carbon steel rod[J].Materials Science and Technology,1985,1(04):276-284. |
[8] | Picking F B.The spectrum of microalloyed high strength low alloyed steels[A].Pennsylvania,USA,1983:1-32. |
[9] | S. Zajac;B. Hutchinson;R. Lagneborg .FERRITE GRAIN REFINEMENT IN SEAMLESS PIPES THROUGH INTRAGRANULAR NUCLEATION ON VN[J].Metallurgia Italiana,2009(2):39-48. |
[10] | Jae-Young CHO;Dong-Woo SUH;Joo-Hee KANG;Hu-Chul LEE .Orientation Distribution of Proeutectoid Ferrite Nucleated at Prior Austenite Grain Boundaries in Vanadium-added Steel[J].ISIJ International,2002(11):1321-1323. |
[11] | D. Hernandez;B. Lopez;J.M. Rodriguez-Ibabe .Ferrite Grain Size Refinement in Vanadium Microalloyed Structural Steels[J].Materials Science Forum,2005(0):411-418. |
[12] | Tanntiru M;Shanmugam S;Misra R D .Microalloyod V-Nb-Ti and V steels,Part 1-Stereological study of ferrite-pearlite microstructure and its relationship to toughness[J].Materials Science and Technology,2005,21(02):159-164. |
[13] | A. Ardehali Barani;F. Li;P. Romano .Design of high-strength steels by microalloying and thermomechanical treatment[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):138-146. |
[14] | Takahiro KUSHIDA;Hitoshi MATSUMOTO .Delayed Fracture and Hydrogen Absorption of 1.3 Gpa Grade High Strength Bolt Steel[J].鉄と鋼,1996(4):37-42. |
[15] | Kubota M;Tarui T;Yamasaki S et al.Development of high-strength steels for bolts Nippon Steel Technical Report No.91[R].,2005. |
[16] | Tomoyuki YOKOTA;Tetsuo SHIRAGA .Evaluation of Hydrogen Content Trapped by Vanadium Precipitates in a Steel[J].ISIJ International,2003(4):534-538. |
[17] | Woodhead J H.The physical metallurgy of vanadium steel[A].Chicago:3-10. |
[18] | Asahi H;Hirakami D;Yamasaki S .Hydrogen trapping behavior in vanadium-added sterl[J].ISIJ International,2003,43(04):527-533. |
[19] | B.A. Szost;R.H. Vegter;P.E.J. Rivera-Diaz-del-Castillo .Developing bearing steels combining hydrogen resistance and improved hardness[J].Materials & design,2013(Jan.):499-506. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%