利用飞秒激光双光子微纳加工技术与化学镀工艺制备了三维金属微弹簧结构.采用扫描电子显微镜(SEM)及选区电子能谱(EDS)对镀层进行了表征,当化学镀时间为15 min时,所得到的镀层厚度约为130 nm.对不同电镀时间下获得的镀层电阻率进行了测定,实验结果表明,当电镀时间为35 min时得到的镀层电阻率约为80×10-9 Ω·m,仅为银块体材料电阻率16×10-9 Ω·m的5倍.利用这种方法,我们制备了总长度为28.75 μm、周期为2.93 μm的悬空金属弹簧结构,其中弹簧圈数为9圈,直径为6 μm,弹簧线分辨率为1.17 μm.文中所述的将双光子微纳加工技术与化学镀技术相结合的方法可以实现任意三维微金属结构与器件的制备,在微光学器件、微机电系统(MEMS)及微传感器等领域有着广泛的应用前景.
参考文献
[1] | William L. Barnes;Alain Dereux;Thomas W. Ebbesen .Surface plasmon subwavelength optics[J].Nature,2003(6950):824-830. |
[2] | Barnes S M;Miller S L;Rodgers M S;Bitsie F.Torsional ratcheting actuating system[A].,2000:273-276. |
[3] | Manfrinato, V.R.;Zhang, L.;Su, D.;Duan, H.;Hobbs, R.G.;Stach, E.A.;Berggren, K.K. .Resolution limits of electron-beam lithography toward the atomic scale[J].Nano letters,2013(4):1555-1558. |
[4] | Zhang Y;Hui C;Sun R;Li K,He K,Ma X,Liu F .A large-area 15 nm graphene nanoribbon array patterned by a focused ion beam[J].NANOTECHNOLOGY,2014,25(13):135301.1-135301.6. |
[5] | A. M. Munshi;D. L. Dheeraj;V. T. Fauske;D. C. Kim;J. Huh;J. F. Reinertsen;L. Ahtapodov;K. D. Lee;B. Heidari;A. T. J. van Helvoort;B. O. Fimland;H. Weman .Position-Controlled Uniform GaAs Nanowires on Silicon using Nanoimprint Lithography[J].Nano letters,2014(2):960-966. |
[6] | Kawata S;Sun HB;Tanaka T;Takada K .Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption.[J].Nature,2001(6848):697-698. |
[7] | Cao, YY;Takeyasu, N;Tanaka, T;Duan, XM;Kawata, S .3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction[J].Small,2009(10):1144-1148. |
[8] | Sun, ZB;Dong, XZ;Chen, WQ;Nakanishi, S;Duan, XM;Kawata, S .Multicolr polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures[J].Advanced Materials,2008(5):914-919. |
[9] | Klein S;Barsella A;Leblond H;Bulou H;Fort A;Andraud C;Lemercier G;Mulatier JC;Dorkenoo K .One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption[J].Applied physics letters,2005(21):1118-1-1118-3-0. |
[10] | Gold Helix Photonic Metamaterial as Broadband Circular Polarizer[J].Science,2009(Sep.18 TN.5947):1513. |
[11] | Markus Deubel;Georg Von Freymann;Martin Wegener;Suresh Pereira;Kurt Busch;Costas M. Soukoulis .Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J].Nature materials,2004(7):444-447. |
[12] | Kato J;Takeyasu N;Adachi Y;Sun HB;Kawata S .Multiple-spot parallel processing for laser micronanofabrication[J].Applied physics letters,2005(4):4102-1-4102-3-0. |
[13] | Richard A.Farrer;Christopher N.LaFratta;Linjie Li;Julie Praino;Michael J.Naughton .Selective Functionalization of 3-D Polymer Microstructures[J].Journal of the American Chemical Society,2006(6):1796-1797. |
[14] | Yan-Dong Du;Wei-Hua Han;Wei Yan;Xiao-Na Xu;Yan-Bo Zhang;Xiao-dong Wang;Fu-Hua Yang;Hong-Zhong Cao;Feng Jin;Xian-Zi Dong;Zhen-Sheng Zhao;Xuan-Ming Duan;Yang Liu .Femtosecond laser lithography technique for submicron T-gate fabrication on positive photoresist[J].Optical Engineering,2012(5):054303-1-054303-5. |
[15] | Zhou W;Kuebler S M;Braun K L;Yu T,Cammack J K,Ober C K,Perry J W,Marder S R .An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication[J].Science (New York N Y ),2002,296(5570):1106-1109. |
[16] | Juan Wang;Yan He;Hong Xia .Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization[J].Lab on a chip,2010(15):1993-1996. |
[17] | Bin-Bin Xu;Yong-Lai Zhang;Hong Xia .Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing[J].Lab on a chip,2013(9):1677-1690. |
[18] | Atsushi Ishikawa;Takuo Tanaka;Satoshi Kawata .Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye[J].Applied physics letters,2006(11):113102.1-113102.3. |
[19] | Takuo Tanaka;Atsushi Ishikawa;Satoshi Kawata .Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure[J].Applied physics letters,2006(8):081107-1-081107-3-0. |
[20] | Xu, B.-B.;Xia, H.;Niu, L.-G.;Zhang, Y.-L.;Sun, K.;Chen, Q.-D.;Xu, Y.;Lv, Z.-Q.;Li, Z.-H.;Misawa, H.;Sun, H.-B. .Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating[J].Small,2010(16):1762-1766. |
[21] | Takeyasu N;Tanaka T;Kawata S .Fabrication of 3D metal/polymer microstructures by site-selective metal coating[J].Applied physics, A. Materials science & processing,2008(2):205-209. |
[22] | Nikos Vasilantonakis;Konstantina Terzaki;Ioanna Sakellari;Vytautas Purlys;David Cray;Costas M. Soukoulis;Maria Vamvakaki;Maria Kafesaki;Maria Farsari .Three-Dimensional Metallic Photonic Crystals with Optical Bandgaps[J].Advanced Materials,2012(8):1101-1105. |
[23] | Wei-Kang Wang;Zheng-Bin Sun;Mei-Ling Zheng .Magnetic Nickel-Phosphorus/Polymer Composite and Remotely Driven Three-Dimensional Micromachine Fabricated by Nanoplating and Two-Photon Polymerization[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2011(22):11275-11281. |
[24] | Tan DF;Li Y;Qi FJ;Yang H;Gong QH;Dong XZ;Duan XM .Reduction in feature size of two-photon polymerization using SCR500[J].Applied physics letters,2007(7):71106-1-71106-3-0. |
[25] | Xian-Zi Dong;Qi Ya;Xin-Zhi Sheng;Zhi-Yuan Li;Zhen-Sheng Zhao;Xuan-Ming Duan .Photonic bandgap of gradient quasidiamond lattice photonic crystal[J].Applied physics letters,2008(23):231103-1-231103-3-0. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%