欢迎登录材料期刊网

材料期刊网

高级检索

为探索三峡库区消落带土壤淹水期汞的环境化学行为,利用模拟试验,设置A (15℃,低溶解氧( DO))、B (30℃,低DO)、C (15℃,高DO)3组处理,在人工气候培养箱中进行消落带土壤淹水过程中汞的释放与甲基化特征研究,淹水试验共进行了40 d.结果表明,淹水初期(0—10 d)土壤汞呈释放趋势,A、B、C等3组处理水体中总汞浓度逐渐增加,而土壤中总汞含量相应降低;随淹水时间的延长(>10 d),二者达到平衡.淹水后,A、B、C处理上覆水甲基汞浓度随淹水时间的延长而升高,且分别在第15天、第8天、第15天达到峰值,第30天基本达到平衡;土壤甲基汞含量随淹水时间的延长而增高,并在第30天达到平衡,平衡时土壤及上覆水甲基汞浓度规律均表现为B > A > C.土壤?上覆水系统温度的适当升高利于土壤汞的释放及甲基化;高溶解氧利于土壤汞的释放,低溶解氧则更利于汞的甲基化.

To understand the environmental fate of mercury in the Three Gorges Reservoir region during the flooding period, three treatments including A (15 ℃, hypoxia), B (30 ℃, hypoxia) and C (15 ℃, high dissolved oxygen) were conducted in the lab under submerged conditions, and the characteristics of soil mercury release and methylation were evaluated for whole 40 days. The results showed, at the initial submerging period, soil Hg release increased, and total Hg concentration in water of three treatments also increased gradually, but the total Hg concentration in soils decreased. With increasing submerging time (> 10d ) , total Hg concentrations reached equilibrium between soil and underlying waters. After submerging, MeHg concentrations in underlying water increased with submerging period, which were observed in all treatments, and maximum values occurred on the 15th day, 8th day and 15th day respectively. Equilibrium of all treatments was reached on approximately 30th day. Additionally, MeHg in soils increased with submerging period and also reached equilibrium on the 30th day. At equilibrium, MeHg concentrations in soils and underlying water were B>A>C. Moreover, high temperature in the soil?underlying water system in a certain range enhanced soil Hg release and methylation. Furthermore,high dissolved oxygen concentration also enhanced soil Hg release, but low dissolved oxygen concentration favored of methylation processes.

参考文献

[1] Schroeder W H, Munthe J . Atmospheric mercury-an overview[J].Atmospheric Environment,1998,32(5):809-822.
[2] Feng X, Jiang H, Qiu G, et al. Mercury mass balance study in Wujiangdu and Dongfeng Reservoirs, Guizhou, China [J]. Environmental Pollution, 2009, 157(10):2594-2603
[3] 冯新斌.水库汞的生物地球化学循环研究进展[J].环保科技,2011(01):1-5.
[4] 叶琛,李思悦,卜红梅,陈晰,张全发.三峡水库消落区蓄水前土壤重金属含量及生态危害评价[J].土壤学报,2010(06):1264-1269.
[5] 张成,宋丽,王定勇,张金洋,孙荣国.干湿交替条件下三峡水库消落带土壤汞形态变化[J].应用生态学报,2013(12):3531-3536.
[6] 单长青,刘汝海,单红仙.胶州湾近岸沉积物-海水汞的释放研究[J].海洋湖沼通报,2006(04):44-51.
[7] 任家盈,姜霞,陈春霄,张万忠,张永生,易凤姣,赵铮.太湖营养状态对沉积物中总汞和甲基汞分布特征的影响[J].中国环境科学,2013(07):1290-1297.
[8] 胡海燕,冯新斌,曾永平,仇广乐.汞的微生物甲基化研究进展[J].生态学杂志,2011(05):874-882.
[9] 白薇扬,冯新斌,何天容,仇广乐,闫海鱼.阿哈水库沉积物总汞及甲基汞分布特征[J].生态学杂志,2011(05):976-980.
[10] Susanne M U, Trevor W T, Svetlana A A. Mercury in the aquatic environment:A review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001, 31(3):241-293
[11] 孙荣国,毛雯,马明,张成,王定勇.水体中甲基汞光化学降解特征研究[J].环境科学,2012(12):4329-4334.
[12] 王海凤,佘小林,冯玲玲,胡兰.DMA-80测汞仪直接测定土壤中的痕量汞[J].现代仪器,2012(03):107-109.
[13] 何天容,冯新斌,戴前进,仇广乐,商立海,蒋红梅,LIANG Lian.萃取-乙基化结合GC-CVAFS法测定沉积物及土壤中的甲基汞[J].地球与环境,2004(02):83-86.
[14] Mercury in Water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry (Method 1631, Revision E), EPA-821-R-02-019[S]. U.S. EPA:Washington, DC, 2002
[15] Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS(Method 1630), EPA-821-R-01-020[S]. U.S. EPA:Washington, DC, 2001
[16] 闫海鱼,冯新斌.水/气界面间汞交换通量的研究进展展[J].环境化学,2011(01):92-96.
[17] 王继纲,陈金民.厦门港湾潮间带沉积物中汞的赋存形态及其释放动力学[J].台湾海峡,2011(03):310-315.
[18] 钱晓莉,冯新斌,闭向阳,何天容,郭艳娜,付学吾,李平.贵州省草海表层水体和沉积物间隙水中汞的含量和形态分布初步研究[J].湖泊科学,2008(05):563-570.
[19] Feng X, Bai W, Shang L, et al. Mercury speciation and distribution in Aha reservoir which was contaminated by coal mining activities in Guiyang, Guizhou, China[J]. Applied Geochemistry, 2011, 26(2):213-221
[20] 阴永光,李雁宾,蔡勇,江桂斌.汞的环境光化学[J].环境化学,2011(01):84-91.
[21] Watras C J, Morrison K A, Bloom N S. Chemical correlates of Hg and methyl Hg in Northern Wisconsin Lake waters under ice cover[J]. Water Air Soil Pollut, 1995, 84(3):253-267
[22] Macalady J L, Mack E E, Nelson D C, et al . Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California[J].Applied and Environmental Microbiology,2000,66(4):1479-1488.
[23] 邹嫣,司友斌,颜雪,陈艳.Geobacter sulfurreducens对汞的甲基化及其影响因素研究[J].环境科学,2012(09):3247-3252.
[24] Kotnik J, Horvat M, Fajon V, et al. Mercury in small freshwater lakes:a case study:Lake Velenje, Slovenia[J]. Water Air Soil Pollution, 2002, 134(1/4):319-339
[25] Nagase H, Ose Y, Sato T, Ishikawa T. Methylation of mercury by humic substances in an aquatic environment[J]. Sci Tot Environ, 1982, 25(2):133-142
[26] Nagase H, Ose Y, Sato T, Ishikawa T. Mercury methylation by compounds in humic material [J]. Sci Tot Env, 1984, 32(2):147-156
[27] 何天容,冯新斌,郭艳娜,孟博,李仲根,仇广乐,LIANG Lian.红枫湖沉积物中汞的环境地球化学循环[J].环境科学,2008(07):1768-1774.
[28] 陈鲜艳,张强,叶殿秀,廖要明,祝昌汉,邹旭恺.三峡库区局地气候变化[J].长江流域资源与环境,2009(01):47-51.
[29] Feng X, Jiang H, Qiu G, et al . Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China[J].Environmental Pollution,2009,157(11):2970-2984.
[30] Lean D R S, Siciliano S D. Production of methylmercury by solar radiation [J]. Journal de Physique Ⅳ, 2003, 107:743-747
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%