{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"纤维以其塑性变形小、强度高、韧性大等优点在混凝土中得到越来越广泛的应用,但由于不同纤维的尺度与性能不同,导致其对混凝土的力学性能影响结果不同,因此本文分别对单掺、双掺仿钢纤维和聚丙烯纤维混凝土、钢纤维混凝土的抗压强度、劈裂抗拉强度和抗折强度进行了试验研究,并将其与普通混凝土的力学性能进行比较.结果表明,纤维混凝土普通混凝土的抗压强度、劈裂抗拉强度、抗折强度都有明显提高,且混杂纤维较单一纤维混凝土的强度提高更为明显,混杂纤维混凝土的强度与钢纤维混凝土强度相差不大,并以成本低、分散性好、不易锈蚀等优点可以取代钢纤维在某些工程中的应用.","authors":[{"authorName":"李燕飞","id":"ca400044-624d-4b7a-b80c-3d8fc0aa885b","originalAuthorName":"李燕飞"},{"authorName":"杨健辉","id":"5d6d69e3-5b43-4483-9650-5deebaa3a2aa","originalAuthorName":"杨健辉"},{"authorName":"丁鹏","id":"71cc1791-69c9-41e6-b4e9-de6418dd2b08","originalAuthorName":"丁鹏"},{"authorName":"赵红兵","id":"f9fc6d35-fccc-44dc-b2a3-63e8214b8108","originalAuthorName":"赵红兵"}],"doi":"","fpage":"60","id":"56adf602-886c-43ae-87b8-405f8948575b","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"43ac78f5-7ae5-4850-b2de-b92030a749b2","keyword":"纤维混凝土","originalKeyword":"纤维混凝土"},{"id":"136b8bc3-bf01-470b-a053-d9ac49c4a02a","keyword":"普通混凝土","originalKeyword":"普通混凝土"},{"id":"ce8ec4e4-e534-475a-b810-4a0be47a67a4","keyword":"陶粒混凝土","originalKeyword":"陶粒混凝土"},{"id":"709b47bb-29cd-4dc2-97f3-9b0fd5f73e22","keyword":"仿钢纤维","originalKeyword":"仿钢纤维"},{"id":"905d55d2-d448-4373-b499-0f7ea9ad452f","keyword":"聚丙烯纤维","originalKeyword":"聚丙烯纤维"},{"id":"aaf25bcb-0a6f-4dca-b59c-40dfc211fa1c","keyword":"钢纤维","originalKeyword":"钢纤维"},{"id":"20af684b-8bd9-477d-bf52-f4c5ad4b37f6","keyword":"混杂纤维","originalKeyword":"混杂纤维"},{"id":"38d833ea-5d92-4301-a563-6f7c704e66fc","keyword":"强度","originalKeyword":"强度"}],"language":"zh","publisherId":"blgfhcl201302013","title":"混杂纤维混凝土力学性能研究","volume":"","year":"2013"},{"abstractinfo":"为预测氯盐渍土地区混凝土结构的使用寿命,采用试验方法与数值模拟方法,统计分析了混凝土保护层中氯离子扩散性特征,采用Monte-Carlo法对Fick第二扩散定律进行数值模拟,评估不同保护层厚度混凝土结构的使用寿命.结果表明:氯离子扩散性特征较好地服从正态分布,保护层厚度对混凝土结构使用寿命有明显的影响,适当增加保护层厚度可使结构使用寿命得到显著提高.","authors":[{"authorName":"荆磊","id":"345beaa0-b697-4dc9-9f15-fab345fbe7ae","originalAuthorName":"荆磊"},{"authorName":"闫长旺","id":"94707b1b-34e9-4f40-9dd1-48da2f51f35a","originalAuthorName":"闫长旺"},{"authorName":"刘曙光","id":"db62b0d4-f977-4313-8759-045db08f7384","originalAuthorName":"刘曙光"},{"authorName":"张菊","id":"20e702be-6b8a-46cd-be54-05456b7950b1","originalAuthorName":"张菊"},{"authorName":"段连钧","id":"554bf8ef-0b63-4743-8aa0-4136ed2b9a95","originalAuthorName":"段连钧"}],"doi":"10.11973/fsyfh-201609012","fpage":"743","id":"92b94bc1-4e47-41ca-9fe6-ad0ec355332b","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"e70d8e32-2e61-47d4-b953-ef4c1b149b91","keyword":"普通混凝土","originalKeyword":"普通混凝土"},{"id":"740b348d-c77f-4d41-822f-0c9e7da0948f","keyword":"氯盐渍土","originalKeyword":"氯盐渍土"},{"id":"f09d6e89-1995-491e-a9a0-598287b3bbfc","keyword":"Fick第二扩散定律","originalKeyword":"Fick第二扩散定律"},{"id":"d6f39c71-1757-4b85-8558-b1ae62ea1d93","keyword":"Monte-Carlo法","originalKeyword":"Monte-Carlo法"},{"id":"7754c20a-6488-4266-b69e-8b1d8ba45282","keyword":"使用寿命","originalKeyword":"使用寿命"}],"language":"zh","publisherId":"fsyfh201609012","title":"基于Monte-Carlo法预测氯盐渍土地区混凝土结构的使用寿命","volume":"37","year":"2016"},{"abstractinfo":"为研究西部氯盐渍土介质中混凝土的氯离子扩散性,采用实验分析、微观扫描、理论预测相结合的方法,分析混凝土中氯离子含量与分布规律、氯离子对流区深度与峰值含量、表层氯离子含量时变规律以及试件表层微观形貌,预测既定混凝土保护层厚度处达到钢筋锈蚀临界氯离子浓度所需时间.研究结果表明,沿扩散深度混凝土中自由氯离子含量与总氯离子含量均呈现出先增长后降低的趋势,二者具有很好的线性关系;存在明显的氯离子含量峰值,随浸泡时间的变化较小;随着浸泡时间的增加,对流区深度逐渐加大,表层氯离子含量逐渐增加,混凝土中Friedel's和Cl元素逐渐增多.理论分析结果显示,氯离子扩散系数随着扩散深度增加而增大,随浸泡时间增加而减小,使用寿命预测结果与工程实际混凝土结构腐蚀情况吻合较好,预测模型可用于西部氯盐渍土介质中混凝土结构使用寿命预测与分析.","authors":[{"authorName":"闫长旺","id":"05581257-5aea-48dc-bba0-b53559c878bf","originalAuthorName":"闫长旺"},{"authorName":"李杰","id":"46fef35c-0b82-40f1-9589-65a09e31ab1c","originalAuthorName":"李杰"},{"authorName":"张菊","id":"1f09daf1-c19c-4db6-83b5-fa676da02e9a","originalAuthorName":"张菊"},{"authorName":"刘曙光","id":"a01baabb-cfe6-4dcc-b0d8-4aa4ee343892","originalAuthorName":"刘曙光"}],"doi":"10.3969/j.issn.1001-9731.2016.02.013","fpage":"2060","id":"b275b9f3-fc93-4db2-8c23-53fafbd2d8db","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"94f3db17-226d-47d5-8d42-1c736d24d138","keyword":"普通混凝土","originalKeyword":"普通混凝土"},{"id":"26aec20d-f49e-4961-a553-853a686040d9","keyword":"自由氯离子","originalKeyword":"自由氯离子"},{"id":"99d6fa02-74da-406e-9bce-d6a4242e7f02","keyword":"微观扫描","originalKeyword":"微观扫描"},{"id":"4de0eb8b-d7f9-47b2-8542-0770e371e94f","keyword":"扩散系数","originalKeyword":"扩散系数"},{"id":"24737243-c843-4777-bd35-46a5b3489951","keyword":"使用寿命","originalKeyword":"使用寿命"}],"language":"zh","publisherId":"gncl201602013","title":"西部氯盐渍土介质中混凝土的氯离子扩散性","volume":"47","year":"2016"},{"abstractinfo":"利用废弃混凝土生产再生细骨料,然后以不同掺量取代人工砂生产普通砂浆,就再生细骨料掺量对普通砂浆性能包括用水量、保水性、凝结时间、拉伸粘结强度和抗压强度的影响进行了相关研究.试验结果表明:一定量的再生细骨料取代人工砂生产普通砂浆是可行的,可以满足相关标准、规范、工程的要求.","authors":[{"authorName":"周爱军","id":"573a7f73-c5d6-428b-880a-42f85b9f41c1","originalAuthorName":"周爱军"}],"doi":"","fpage":"620","id":"e417ac36-7e93-462e-9cfd-d1a404a84f78","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"23aef494-b360-4a93-a501-144f153d4122","keyword":"废弃混凝土","originalKeyword":"废弃混凝土"},{"id":"afeceba8-2957-4469-92ad-9267d7a1a49d","keyword":"再生细骨料","originalKeyword":"再生细骨料"},{"id":"6bf8065d-b382-4a1f-9d92-d38169f1d9f1","keyword":"人工砂","originalKeyword":"人工砂"},{"id":"24421150-2f2f-401b-a28f-87b0bd3ff402","keyword":"普通砂浆","originalKeyword":"普通砂浆"}],"language":"zh","publisherId":"gsytb201702036","title":"废弃混凝土生产普通砂浆性能的试验研究","volume":"36","year":"2017"},{"abstractinfo":"通过8根钢筋混凝土矩形梁的试验,主要研究普通玻璃纤维布不同粘贴层数及长度对钢筋混凝土梁受弯性能的影响和作用,探讨了加固梁的加固效果,可供实际加固工程应用参考.","authors":[{"authorName":"刘承斌","id":"ec2a63e4-75cb-42e5-9f93-73aeb1c54fcf","originalAuthorName":"刘承斌"},{"authorName":"周瑾","id":"3ace638d-dde6-4198-87d2-674ad7612e61","originalAuthorName":"周瑾"},{"authorName":"王柏生","id":"88b0ef4b-5d8b-4025-99ba-cc21fbe17e05","originalAuthorName":"王柏生"},{"authorName":"张亦薇","id":"675030a2-70b2-470d-b915-5790345405d0","originalAuthorName":"张亦薇"}],"doi":"10.3969/j.issn.1003-0999.2004.02.005","fpage":"17","id":"ee4a7826-6531-401c-9109-21bed8421aa2","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"ebb39287-107d-4cb6-b9d1-339132a338a5","keyword":"普通玻璃纤维布","originalKeyword":"普通玻璃纤维布"},{"id":"d1b1587a-f034-4e14-a835-4090873814d9","keyword":"抗弯性能","originalKeyword":"抗弯性能"},{"id":"957fb845-3298-439d-9ac5-097db7744d6d","keyword":"试验研究","originalKeyword":"试验研究"},{"id":"9cdd4f90-1d15-47f4-b42d-b15ac8f43984","keyword":"加固","originalKeyword":"加固"}],"language":"zh","publisherId":"blgfhcl200402005","title":"普通玻璃纤维布加固钢筋混凝土梁抗弯性能试验研究","volume":"","year":"2004"},{"abstractinfo":"对中国JGJ55-2011《普通混凝土配合比设计规程》与美国ACI 211.1-1991 R2009《普通混凝土、重混凝土及大体积混凝土配比选择标准》进行了全面系统的比较研究并依据两国规范对同一条件下的四组分混凝土分别进行了配比计算.研究表明两国在混凝土配比设计的方法和结果上有相同之处,也有诸多不同.中美规范对最关键参数水灰比的确定在本质上是一致的,两者均以混凝土强度与灰水比成线性关系的水灰比定则为配比设计基础.两国规范确定用水量也都同样基于“固定用水量定则”.对于四组分混凝土,与美国规范相比,中国规范计算的水灰比偏大较多,同时中国规范计算的水泥用量偏小.中国JGJ55-2011规范中混凝土强度的富余量比美国规范小,也比JGJ55-2000小,值得工程界注意.这一分析结果与一些文献给出的按新规范计算六组分混凝土水灰比偏小而强度偏大的反例不同,这种情况与JGJ55-2011中矿物掺合料影响系数取值处理粗糙以及总体偏小有关.","authors":[{"authorName":"庄诗雨","id":"408a916d-5835-4f19-8711-5b2451e7a38a","originalAuthorName":"庄诗雨"},{"authorName":"欧阳东","id":"910f3d0d-506d-478d-818b-760f7ef60d40","originalAuthorName":"欧阳东"}],"doi":"","fpage":"3499","id":"2f7c7907-34a2-48ee-998e-acd461674523","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"117a6800-30c1-4ff3-b059-ddb44d2a15d1","keyword":"建筑科学","originalKeyword":"建筑科学"},{"id":"d7a35556-3fbf-4a15-8c69-297ac081218d","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"1bdb9893-6b8a-4778-874a-7ce8a7b562c9","keyword":"配合比设计方法","originalKeyword":"配合比设计方法"}],"language":"zh","publisherId":"gsytb201611002","title":"中美普通混凝土配比设计方法的系统比较和研究","volume":"35","year":"2016"},{"abstractinfo":"采用混凝土立方体抗压标准试件的强度平均值和离散系数随搅拌时间的变化表征混凝土的搅拌均匀性,当离散系数随搅拌时间变化稳定时,则认为搅拌完成.通过调整配合比改变混凝土稠度,在普通搅拌工艺下,所需搅拌时间大致为大流态混凝土>干硬性混凝土普通塑性混凝土.水分的减少、砂率的增大、粉料的增多,均不利于混合料的混合,在一定程度上延长了搅拌时间;而先拌合砂浆30s+混凝土拌合30s的二次搅拌工艺下,与普通搅拌工艺对比,不仅对强度性能有一定的提高,降低离散系数,改善混凝土的均匀性,而且有效增加混凝土的拌合效率,提高混凝土的单位产量,解决某些混凝土拌合难度较大、生产效率低的问题.","authors":[{"authorName":"方东","id":"13bb1a84-be3f-4660-9fbd-e3607dac07c6","originalAuthorName":"方东"},{"authorName":"周明凯","id":"bed08dca-2cf1-4afd-b3fa-d00a60d0fa31","originalAuthorName":"周明凯"},{"authorName":"李北星","id":"fb679015-a1c2-4564-a0c1-8a70bac46358","originalAuthorName":"李北星"}],"doi":"","fpage":"113","id":"8c7821fe-5983-428a-824d-d5e0f282cdfe","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a1fcbe60-7725-4e10-9c3c-5fa2d2ee2b83","keyword":"混凝土搅拌","originalKeyword":"混凝土搅拌"},{"id":"09837656-7aaf-4f54-88d8-40d60b33c4ef","keyword":"二次搅拌工艺","originalKeyword":"二次搅拌工艺"},{"id":"37e288b0-a2a1-471c-9598-5bd496d52e99","keyword":"搅拌均匀性","originalKeyword":"搅拌均匀性"},{"id":"c97a6155-85b0-4db2-8e04-b69d8eb10764","keyword":"离散系数","originalKeyword":"离散系数"}],"language":"zh","publisherId":"gncl2012z1028","title":"不同稠度状态混凝土采用二次搅拌工艺与普通搅拌工艺的对比研究","volume":"43","year":"2012"},{"abstractinfo":"实验采用国家标准GB/T 50082-2009中推荐的混凝土抗硫酸盐侵蚀试验方法,将粉煤灰基地聚物混凝土(FGC)和普通混凝土(PCC)试样置于质量分数为5%的硫酸钠溶液中进行干湿循环侵蚀实验.以试样侵蚀后的结构形态变化、抗压强度损失、质量体积变化、动弹性模量变化为评价指标,并借助扫描电子显微镜(SEM)、X射线能谱(EDS)、电感耦合等离子体发射光谱(ICP-OES)等分析手段对FGC与PCC在同一硫酸盐侵蚀环境中的耐蚀性能、损伤机理以及两者间的相互影响进行了研究与分析.结果显示,随着侵蚀周期的增长两种混凝土的抗压强度和体积均表现出先降低后上升的趋势;二者的最大质量变化率均较小,FGC为0.3%,PCC为0.6%;二者的动弹性模量变化均较为复杂.微观观测发现影响FGC和PCC结构形态的关键物质分别是粉煤灰颗粒与膨胀性产物.化学分析表明FGC与PCC间产生相互影响的原因是材料各组分在侵蚀液中的溶解与渗透.","authors":[{"authorName":"唐灵","id":"c67cb1f4-5c5c-4ced-b2e6-f28976a1a76c","originalAuthorName":"唐灵"},{"authorName":"黄琪","id":"d35bf4c0-4a58-41fa-87c0-fc5c048bd66b","originalAuthorName":"黄琪"},{"authorName":"王清远","id":"988c40a4-1b49-46ce-be19-7db43283199f","originalAuthorName":"王清远"},{"authorName":"张红恩","id":"2c4b7e61-72ed-4108-bd60-62ca14ad5103","originalAuthorName":"张红恩"},{"authorName":"石宵爽","id":"9bcb61c1-dc0e-410a-9acf-9fe47a822904","originalAuthorName":"石宵爽"}],"doi":"10.11896/j.issn.1005-023X.2015.06.028","fpage":"129","id":"9ae79918-515a-4453-9d16-ff9a692b6ff1","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"388bfabf-a005-48c6-8279-1b5cd9a8e5db","keyword":"地聚物混凝土","originalKeyword":"地聚物混凝土"},{"id":"152c4ac3-e07f-4bb2-989c-3bc43aa09c02","keyword":"硫酸盐侵蚀","originalKeyword":"硫酸盐侵蚀"},{"id":"392f88d8-8c78-4274-9259-4e1d579c289b","keyword":"动弹性模量","originalKeyword":"动弹性模量"},{"id":"00c8dea0-baf6-46e7-8eab-d00289d918cf","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"d2651338-3cdb-432b-bf0d-0498c5d6b6e8","keyword":"抗压强度","originalKeyword":"抗压强度"}],"language":"zh","publisherId":"cldb201506028","title":"同一硫酸盐环境下地聚物混凝土普通混凝土的耐蚀性能及机理分析","volume":"29","year":"2015"},{"abstractinfo":"混凝土是现代建筑工程中最重要的基本建筑材料.介绍了混凝土的特点及分类,并结合其相关应用背景对重混凝土普通混凝土、轻混凝土以及特(超)轻混凝土等不同质量密度混凝土的结构特点、材料组成和质量控制进行了评述.","authors":[{"authorName":"刘才林","id":"75e4f9f5-3791-4d67-8abb-c409c8b47223","originalAuthorName":"刘才林"},{"authorName":"胡小亮","id":"d7004d18-fd09-4843-a90c-61bff19c7653","originalAuthorName":"胡小亮"},{"authorName":"杨军校","id":"5f70a027-c255-4e83-b2f4-84cd1a4bf78f","originalAuthorName":"杨军校"}],"doi":"","fpage":"437","id":"971947f6-f12d-41ee-a3b4-ae5f758db51d","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ca008737-226a-431a-9d9a-403b65baadc6","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"dde1c06c-7450-41a9-9a22-77221db6f6c5","keyword":"质量密度","originalKeyword":"质量密度"},{"id":"679028d9-90bd-465d-bbca-264abadc0ac5","keyword":"混凝土外加剂","originalKeyword":"混凝土外加剂"},{"id":"84ea3981-933c-4ca3-8446-9971468e44dc","keyword":"混凝土发泡剂","originalKeyword":"混凝土发泡剂"}],"language":"zh","publisherId":"cldb2007z2156","title":"不同质量密度混凝土的特色与应用","volume":"21","year":"2007"},{"abstractinfo":"基于基本的力学方法和耐久性方法研究了再生混凝土的抗压强度、抗碳化性能和抗冻性能.并采用压汞法对再生混凝土的孔结构进行研究.结果表明:再生混凝土的抗压强度比普通混凝土的抗压强度略有降低,孔隙率相比普通混凝土的孔隙率增加了49.5%;其抗碳化能力小于普通混凝土的抗碳化能力;再生混凝土的抗冻性远远小于普通混凝土的抗冻性,180次循环之后其质量损失率接近普通混凝土质量损失率的3倍.","authors":[{"authorName":"丁天庭","id":"9c90e724-401d-4532-b23d-4a99b61bdf39","originalAuthorName":"丁天庭"},{"authorName":"李启华","id":"fc17ab0b-92ad-4796-9762-5825f776037a","originalAuthorName":"李启华"},{"authorName":"陈树东","id":"b3e5847b-0765-4cdf-87c6-2ceb7e37037d","originalAuthorName":"陈树东"}],"doi":"","fpage":"846","id":"91be87d8-fa9c-4868-8bf7-ea2be15888db","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4aadbdca-7ac1-44ef-aa59-59c042f97762","keyword":"再生混凝土","originalKeyword":"再生混凝土"},{"id":"4c366786-8f91-4ca4-a96c-9b8f0a1eeeac","keyword":"抗压强度","originalKeyword":"抗压强度"},{"id":"a5e84fe9-d08e-4986-ba84-c7aba50f7b96","keyword":"抗碳化","originalKeyword":"抗碳化"},{"id":"0ac41371-5873-46d1-a26a-c0be6ae46060","keyword":"抗冻性","originalKeyword":"抗冻性"},{"id":"13a5a74c-4620-4728-9428-1ec0d9567be9","keyword":"孔径分布","originalKeyword":"孔径分布"}],"language":"zh","publisherId":"gsytb201703015","title":"再生混凝土的强度及耐久性能研究","volume":"36","year":"2017"}],"totalpage":432,"totalrecord":4319}