欢迎登录材料期刊网

材料期刊网

高级检索

随着纳米技术的快速发展,纳米材料进入环境并不断累积,因此开展纳米材料的环境安全性研究具有重要意义。纳米银( AgNP )是目前应用最广泛的人工纳米材料之一。本课题组拟以AgNP为研究对象,系统研究其在我国主要类型土壤中的迁移、转化过程及其生态环境效应;基于同步辐射技术、同位素技术和量子化学计算等方法,揭示AgNP 与土壤中主要矿物或有机质之间的相互作用规律;探明AgNP对土壤中微生物、动物和植物的致毒过程及其作用机制;发展AgNP在土壤中迁移的数学模型,预测其在土壤中的迁移、滞留通量进而评价其淋溶风险,为 AgNP 的安全利用提供重要理论基础和技术支撑。

The rapid development of nanotechnology is accompanied by critical environmental risks that need to be addressed and effectively managed. A comprehensive understanding of environmental safety of nanoparticles will promote the sustainability of nanotechnology. Nano Ag particle ( AgNP ) is one of the most widely used manufactured metal?based nanoparticles in the world. In our proposal, AgNP was chosen as the typical manufactured metal?based nanoparticles, the migration and transformation of AgNP in typical Chinese soils will be investigated to explore the physicochemical interactions of AgNP with soil components, such as clay minerals and soil organic matter, and to study the bioavailability and toxicity of AgNP in soil matrices on soil micro?organisms, invertebrates and plants. The toxic effects of chronic/acute AgNP exposure on model soil inhabitants will be evaluated to establish dose?effect correlations, and to probe toxicity mechanism of AgNP . A mathematical model is further simulated to quantitatively assess AgNP migration and co?migration, retention flux in soil, and their consequential environmental risk. The results will provide the fundamental basis and technological support for the development of green nanotechnology.

参考文献

[1] Masciangioli T;Zhang W X .Environmental technologies at the nanoscale[J].Environmental Science and Technology,2003,37:102A-108A.
[2] Woodrow Wilson Center for International Scholars, Washington, DC .The Project on Emerging Nanotechnologies[EB/OL].http://www.nanotechproject.org/inventories/consumer/analysis_draft/,2012.
[3] Yu S J;Yin Y G;Liu J F .Silver nanoparticles in the environment[J].Environ Sci:Process Impacts,2013,15:78-92.
[4] Stensberg MC;Wei Q;McLamore ES;Porterfield DM;Wei A;Sepulveda MS .Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging.[J].Nanomedicine,2011(5):879-898.
[5] FADRI GOTTSCHALK;TOBIAS SONDERER;ROLAND W. SCHOLZ .Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions[J].Environmental Science & Technology,2009(24):9216-9222.
[6] Eva Oberdorster .Manufactured Nanomaterials (Fullerenes,C_(60)) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass[J].Environmental Health Perspectives,2004(10):1058-1062.
[7] 王震宇,赵建,李娜,李锋民,XING Bao-shan.人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J].环境科学,2010(06):1409-1418.
[8] Yuan Ge;Joshua P. Schimel;Patricia A. Holden .Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities[J].Environmental Science & Technology: ES&T,2011(4):1659-1664.
[9] 金盛杨,王玉军,汪鹏,李连祯,周东美.纳米与微米CuO及Cu2+对土壤脲酶的生态毒性比较研究[J].生态毒理学报,2010(06):835-841.
[10] Lin D;Xing B .Root uptake and phyotoxiciy of ZnO nanoparticles[J].Environmental Science and Technology,2008,42:5580-5585.
[11] DIMITRIOS STAMPOULIS;SAION K. SINHA;JASON C. WHITE .Assay-Dependent Phytotoxicity of Nanoparticles to Plants[J].Environmental Science & Technology,2009(24):9473-9479.
[12] 人工纳米材料与植物的相互作用:植物毒性、吸收和传输[J].化学进展,2013(01):156-163.
[13] Jemec A;Drobne D;Remskar M et al.Effects of increased nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber)[J].Environmental Toxicology and Chemistry,2008,27:1904-1914.
[14] 胡长伟,崔益斌,李丁生,高香玉,杨柳燕,李梅.纳米ZnO与TiO2对赤子爱胜蚓(Eisenia foetida)的毒性效应[J].生态毒理学报,2011(02):200-206.
[15] JONATHAN D. JUDY;JASON M. UNRINE;PAUL M. BERTSCH .Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain[J].Environmental Science & Technology: ES&T,2011(2):776-781.
[16] Tal Ben-Moshe;Ishai Dror;Brian Berkowitz .Transport of metal oxide nanoparticles in saturated porous media[J].Chemosphere: Environmental toxicology and risk assessment,2010(3):387-393.
[17] Stability Of Titania Nanoparticles In Soil Suspensions And Transport In Saturated Homogeneous Soil Columns[J].Environmental Pollution,2009(4):1101-1109.
[18] Judy J D;Bertsch P M .Bioavailability,toxicity,and fate of manufactured nanomaterials in terrestrial eEcosystems[J].Advances Agron,2013,123:1-64.
[19] Jacobson AR;McBride MB;Baveye P;Steenhuis TS .Environmental factors determining the trace-level sorption of silver and thallium to soils[J].Science of the Total Environment,2005(1/3):191-205.
[20] Oromieh A G .Evaluating solubility, aggregation and sorption of nanosilver particles and silver ions in soils[D].Sweden:Swedish University of Agricultural Sciences,2011.
[21] Bae S;Hwang Y S;Lee Y J et al.Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles[J].Environ Health Toxicol,2013,28:1-7.
[22] Impellitteri, Christopher A.;Tolaymat, Thabet M.;Scheckel, Kirk G. .The Speciation of Silver Nanoparticles in Antimicrobial Fabric Before and After Exposure to a Hypochlorite/Detergent Solution[J].Journal of Environmental Quality,2009(4):1528-1530.
[23] E. Matt Hotze;Gregory V. Lowry;Clement Levard .Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity[J].Environmental Science & Technology: ES&T,2012(13):6900-6914.
[24] Jingyu Liu;Kelly G. Pennell;Robert H. Hurt .Kinetics and Mechanisms of Nanosilver Oxysulfidation[J].Environmental Science & Technology: ES&T,2011(17):7345-7353.
[25] Erica Dormer;Daryl L. Howard;Martin D. de Jonge .X-ray Absorption and Micro X-ray Fluorescence Spectroscopy Investigation of Copper and Zinc Speciation in Biosolids[J].Environmental Science & Technology: ES&T,2011(17):7249-7257.
[26] BOJEONG KIM;CHEE-SUNG PARK;MITSUHIRO MURAYAMA .Discovery and Characterization of Silver Sulfide Nanoparticles in Final Sewage Sludge Products[J].Environmental Science & Technology: ES&T,2010(19):7509-7514.
[27] Clement Levard;Brian C. Reinsch;F. Marc Michel .Sulfidation Processes of PVP-Coated Silver Nanoparticles in Aqueous Solution: Impact on Dissolution Rate[J].Environmental Science & Technology: ES&T,2011(12):5260-5266.
[28] Jiang D E;Overbury S H;Dai S .Interaction of gold clusters with a hydroxylated surface[J].J Phys Chem Lett,2011,2:1211-1215.
[29] Grest G S;int Veld P J;Lechman J B.Molecular simulations of nanoparticles in an explicit solvent[A].,2008:304.
[30] Wang B Y;Deng L;Wang Y T .Competition between attraction and diffusion in nanoscale non-equilibrium aggregation[J].Sci China Phys Mech Astron,2012,55:2237-2243.
[31] Stability Of Titania Nanoparticles In Soil Suspensions And Transport In Saturated Homogeneous Soil Columns[J].Environmental Pollution,2009(4):1101-1109.
[32] DEB P. JAISI;MENACHEM ELIMELECH .Single-Walled Carbon Nanotubes Exhibit Limited Transport in Soil Columns[J].Environmental Science & Technology,2009(24):9161-9166.
[33] Cornelis, G.;Pang, L.;Doolette, C.;Kirby, J.K.;McLaughlin, M.J..Transport of silver nanoparticles in saturated columns of natural soils[J].Science of the Total Environment,2013:120-130.
[34] Omer Sagee;Ishai Dror;Brian Berkowitz .Transport of silver nanoparticles (AgNPs) in soil[J].Chemosphere: Environmental toxicology and risk assessment,2012(5):670-675.
[35] Pan B;Xing B .Applications and implications of manufactured nanoparticles in soils:A review. European[J].J Soil Science,2012,63:437-456.
[36] Kim, KJ;Sung, WS;Suh, BK;Moon, SK;Choi, JS;Kim, J;Lee, DG .Antifungal activity and mode of action of silver nano-particles on Candida albicans[J].BioMetals: An International Journal on the Role of Metal Ions in Biology, Biochemistry and Medicine,2009(2):235-242.
[37] Ivan Sondi;Branka Salopek-Sondi .Silver nanoparticles as antimicrobial agent:a case study on E.coli as a model for Gram-negative bacteria[J].Journal of Colloid and Interface Science,2004(1):177-182.
[38] Xiao-Hong Nancy Xu;William J.Brownlow;Sophia V.Kyriacou;Qian Wan;Joshua J.Viola .Real-Time Probing of Membrane Transport in Living Microbial Cells Using Single Nanoparticle Optics and Living Cell Imaging[J].Biochemistry,2004(32):10400-10413.
[39] Jose Ruben Morones;Jose Luis Elechiguerra;Alejandra Camacho .The bactericidal effect of silver nanoparticles[J].Nanotechnology,2005(10):2346-2353.
[40] Colman B P;Arnaout C L;Anciaux S.Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario[J].PLoS One,2013:8,e57189.
[41] Christina L. Arnaout;Claudia K. Gunsch .Impacts of Silver Nanoparticle Coating on the Nitrification Potential of Nitrosomonas europaea[J].Environmental Science & Technology: ES&T,2012(10):5387-5395.
[42] Xiu Z;Ma J;Alvarez J J .Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions[J].Environmental Science and Technology,2012,45:9003-9008.
[43] Calder, A.J.;Dimkpa, C.O.;McLean, J.E.;Britt, D.W.;Johnson, W.;Anderson, A.J..Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6[J].Science of the Total Environment,2012:215-222.
[44] Anjum, N.A.;Gill, S.S.;Duarte, A.C.;Pereira, E.;Ahmad, I. .Silver nanoparticles in soil-plant systems[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,2013(9):1896-1-1896-26.
[45] El-Temsah, Y.S.;Joner, E.J. .Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil[J].Environmental toxicology,2012(1):42-49.
[46] Kumari, M;Mukherjee, A;Chandrasekaran, N .Genotoxicity of silver nanoparticles in Allium cepa[J].Science of the Total Environment,2009(19):5243-5246.
[47] Liyan Yin;Yingwen Cheng;Benjamin Espinasse .More than the Ions: The Effects of Silver Nanoparticles on Lolium multiflorum[J].Environmental Science & Technology: ES&T,2011(6):2360-2367.
[48] AMRO M. EL BADAWY;TODD P. LUXTON;RENDAHANDI G. SILVA .Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions[J].Environmental Science & Technology: ES&T,2010(4):1260-1266.
[49] Geisler-Lee, J.;Wang, Q.;Yao, Y.;Zhang, W.;Geisler, M.;Li, K.;Huang, Y.;Chen, Y.;Kolmakov, A.;Ma, X. .Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana[J].Nanotoxicology,2013(1/4):323-337.
[50] Haifeng Qian;Xiaofeng Peng;Xiao Han;Jie Ren;Liwei Sun;Zhengwei Fu .Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana[J].Journal of environmental sciences,2013(9):1947-1955.
[51] Carpita N;Sabularse D;Montezinos D .Determination of the pore size of cell walls of living plants[J].SCIENCE,1979,205:1144-1148.
[52] Christian O. Dimkpa;Joan E. McLean;Nicole Martineau .Silver Nanoparticles Disrupt Wheat (Triticum aestivum L) Growth in a Sand Matrix[J].Environmental Science & Technology: ES&T,2013(2):1082-1090.
[53] Camille Larue;Hiram Castillo-Michel;Sophie Sobanska;Lauric Cecillon;Sarah Bureau;Veronique Barthes;Laurent Ouerdane;Marie Carriere;Geraldine Sarret .Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation[J].Journal of hazardous materials,2014(Jan.15):98-106.
[54] Unrine J;Bertsch P;Hunyadi S.Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments[A].John Wiley & Sons,Inc,2008
[55] McShane H;Sarrazin M;Whalen J K et al.Reproductive and behavioral response of earthworms exposed to nano-sized titanium dioxide in soil[J].Environmental Toxicology and Chemistry,2012,31:184-193.
[56] Meyer, Joel N;Lord, Christopher A;Yang, Xinyu Y;Turner, Elena A;Badireddy, Appala R;Marinakos, Stella M;Chilkoti, Ashutosh;Wiesner, Mark R;Auffan, Melanie .Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans[J].Aquatic Toxicology,2010(2):140-150.
[57] Shoults-Wilson, W. Aaron;Reinsch, Brian C.;Tsyusko, Olga V.;Bertsch, Paul M.;Lowry, Greg V.;Unrine, Jason M. . .Role of Particle Size and Soil Type in Toxicity of Silver Nanoparticles to Earthworms[J].Soil Science Society of America Journal,2011(2):365-377.
[58] Shoults Wilson WA;Zhurbich OI;McNear DH;Tsyusko OV;Bertsch PM;Unrine JM .Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida).[J].Ecotoxicology,2011(2):385-396.
[59] Shoults-Wilson, W.A.;Reinsch, B.C.;Tsyusko, O.V.;Bertsch, P.M.;Lowry, G.V.;Unrine, J.M. .Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida)[J].Nanotoxicology,2011(1/4):432-444.
[60] Unrine, Jason M.;Tsyusko, Olga V.;Hunyadi, Simona E.;Judy, Jonathan D.;Bertsch, Paul M. . .Effects of Particle Size on Chemical Speciation and Bioavailability of Copper to Earthworms (Eisenia fetida) Exposed to Copper Nanoparticles[J].Journal of Environmental Quality,2010(6):1942-1953.
[61] Helen L Hooper;Kerstin Jurkschat;Andrew J. Morgan;Joanne Bailey;Alan J. Lawlor;David J. Spurgeon;Claus Svendsen .Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix[J].Environment international,2011(6):1111-1117.
[62] JASON M. UNRINE;SIMONA E. HUNYADI;OLGA V. TSYUSKO .Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida)[J].Environmental Science & Technology: ES&T,2010(21):8308-8313.
[63] Bouldin J L;Ingle T M;Sengupta A et al.Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia[J].Environmental Toxicology and Chemistry,2008,27(9):1958-1963.
[64] Zhu X S;Wang J X;Zhang X Z et al.Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain[J].CHEMOSPHERE,2010,79:928-933.
[65] McTeer J;Dean A P;White K N et al.Bioaccumulation of silver nanoparticles into Daphniamagna from a freshwater algal diet and the impact of phosphate availability[J].Nanotoxicology,2014,8(3):305-316.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%