欢迎登录材料期刊网

材料期刊网

高级检索

以徐州煤矿混推复垦区为研究对象,采用Tessier连续提取法,对该复垦区土壤Zn、Pb、Ni、Mn、Cu、Cr等6种重金属含量进行分析和风险评价.结果表明,除Cr外,复垦区土壤Zn、Pb、Ni、Mn和Cu的含量均大于当地土壤背景值,但均未超过国家土壤环境质量二级标准,不同复垦年限下土壤重金属含量差异较大,Zn、Mn总体上随复垦年限延长,积累越明显.形态分析表明,Pb和Mn以铁锰氧化物结合态为主;Zn、Ni、Cu和Cr以残渣态为主.徐州煤矿复垦区土壤重金属的生物可利用系数( BF)的平均值大小为Mn>Pb>Cu>Zn>Cr>Ni.各重金属的生态风险程度大小为Pb>Cu>Ni>Mn>Cr>Zn.徐州煤矿复垦区土壤重金属的潜在生态风险指数范围是16.71—25.94,平均值为21.56,属于轻微生态危害.不同复垦年限下土壤重金属的综合潜在生态风险指数大小为1997年复垦>2006年复垦>1987年复垦>2010年复垦>塌陷未复垦>未塌陷,各复垦年限下土壤重金属均属于轻微生态风险.

Soil samples were collected in a Xuzhou reclamation area of coal mine. Five step sequential extraction method was applied to investigate the speciation distribution characteristics of six heavy metals ( Zn, Pb, Ni, Mn, Cu, Cr) in the reclamation soils. Results showed that there was a rather large difference of the heavy metals accumulation under different reclamation years. The concentrations of five heavy metals ( Zn, Pb, Ni, Mn, Cu ) in the reclaimed soil exceeded background value of Jiangsu soil. But the concentrations of all 6 heavy metals in the reclaimed soil were all below the National Soil Environmental Quality Standard of GradeⅡ. Speciation analysis indicated that Pb, Mn were mainly in the Fe?Mn oxide form, while Zn, Ni, Cu, Cr were orimarily in the residual fraction. Bioavailability factor of the heavy metals ranked in the order of Mn > Pb >Cu > Zn > Cr >Ni. The heavy metal ecological risk was in the order of Pb >Cu >Ni >Mn >Cr >Zn. The potential ecological risk index of all heavy metals were between 16.71 and 25.94, the mean value was 21.56, indicating slight pollution. The ecological risk for different reclamation years was in the order of 1997 > 2006 > 1987 > 2010 > un?reclaimed > un?sunken, suggestiag slight pollution.

参考文献

[1] Dennis Schl?Mer;Kevin Nix .Wheat yield,plant nutrients and physical properties of soil deposits on fly ash and coal gangue used for land reclamation in the coal mining area of Huainan,China[D].Germany:Osnabrueck University of Applied Science,2011.
[2] 徐良骥,黄璨,章如芹,刘会平,严家平,Helmut Meuser,Lutz Makowsky.煤矸石充填复垦地理化特性与重金属分布特征[J].农业工程学报,2014(05):211-219.
[3] 张俊,李余生,孟雷,许龙,王云光.芦岭煤矿区土壤重金属元素地球化学特征及来源分析[J].环境化学,2014(11):2001-2002.
[4] 江培龙,方凤满,张杰琼,邓正伟,林跃胜.淮南煤矿复垦区土壤重金属形态分布及污染评价[J].水土保持学报,2013(05):178-182,187.
[5] Tessier A;Campbell P G C;Bisson M .Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-850.
[6] 徐争启,倪师军,庹先国,张成江.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008(02):112-115.
[7] 王莹,董霁红.徐州矿区充填复垦地重金属污染的潜在生态风险评价[J].煤炭学报,2009(05):650-655.
[8] 中国环境监测总站;北京大学;中国科学院沈阳土壤生态所.中国土壤元素背景值[M].北京:中国环境科学出版社,1990
[9] 高彦鑫,冯金国,唐磊,朱先芳,刘文清,季宏兵.密云水库上游金属矿区土壤中重金属形态分布及风险评价[J].环境科学,2012(05):1707-1717.
[10] 陈岩,季宏兵,朱先芳,黄兴星,乔敏敏.北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价[J].农业环境科学学报,2012(11):2142-2151.
[11] Narwal R P;Singh B R .Effect of organic materials on partitioning,extraetability and plant up take of metals in an alum shale soil[J].Water Air Soil Pollution,1998,103:405-421.
[12] Chen M;Ma L;Harris W G .Baseline concentrations of 15 trace elements in Florida surface soils[J].Journal of Environmental Quality,1999,28(4):1173-1181.
[13] Merry R H;Tiller K G;Alston A M .Accumulation of copper,lead and arsenic in some Australian orchard soils[J].Australian Journal of Soil Research,1983,21:549-561.
[14] 杨元根,刘丛强,张国平,吴攀,朱维晃.铅锌矿山开发导致的重金属在环境介质中的积累[J].矿物岩石地球化学通报,2003(04):305-309.
[15] 高明,车福才,魏朝富.长期施用有机肥对紫色水稻土铁锰铜锌形态的影响[J].植物营养与肥料学报,2000(01):11-17.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%