欢迎登录材料期刊网

材料期刊网

高级检索

进入环境的纳米材料对共存化学污染物的环境行为有重要影响.本文选择3种多壁碳纳米管,分别为石墨化多壁碳纳米管(G-MWCNT)、羟基化多壁碳纳米管(O-MWCNT)和氨基化多壁碳纳米管(N-MWCNT),通过批次实验研究其对林丹的吸附行为和催化转化作用.林丹在3种多壁碳纳米管上的吸附动力学符合准二级动力学模型(R2>0.997),吸附速率常数(k2)分别为0.73(G-MWCNT)、0.60(N-MWCNT)和0.28(O-MWCNT)g·mg-1·h-1.林丹在3种多壁碳纳米管上吸附的等温线符合Freundlich经验模型(R2>0.979),不同pH条件下,吸附系数(KF)分别为28.0-30.0(G-MWCNT)、21.3-24.6 (N-MWCNT)和9.1-10.2(O-MWCNT) mg1-n·Ln·g-1.平衡浓度为8.5 mg·L-1,在不同pH条件下林丹在3种多壁碳纳米管上的分配常数(Kd)分别为12.7-14.4(G-MWCNT)、8.7-9.8(N-MWCNT)和3.9-4.2(O-MWCNT)L·g-1.林丹是非离子型有机化合物,疏水作用在吸附过程中起主导作用,表面引入亲水性强的氨基和羟基后,N-MWCNT和O-MWCNT的吸附作用相比具有疏水性表面的G-MWCNT明显减弱.溶液的pH值(5.0-9.0)对同种多壁碳纳米管的吸附作用影响不显著.均相溶液中,林丹发生β-消去反应的准一级动力学表观速率常数kobs(0.017-10.2 d-1)随溶液pH值(7.0-12.0)升高而增大.N-MWCNT对林丹发生β-消去反应起催化作用,这种催化作用随pH值(7.0-9.0)升高而增强.当N-MWCNT存在时,林丹的去除率分别增加了7.5%(pH=7.0)、29.3%(pH=8.0)和30.1%(pH=9.0).在均相溶液和N-MWCNT体系中都检测到γ-1,3,4,5,6-五氯环己烯、1,2,4-三氯苯和1,2,3-三氯苯转化产物.

参考文献

[1] Apul, Onur Guven;Karanfil, Tanju.Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review[J].Water research: A journal of the international water association,2015Jan.1(Jan.1):34-55.
[2] Lam CW;James JT;McCluskey R;Arepalli S;Hunter RL.A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks[J].Critical reviews in toxicology,20063(3):189-217.
[3] Dahm,M.M.;Evans,D.E.;Schubauer-Berigan,M.K.;Birch,M.E.;Deddens,J.A..Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: Mobile direct-reading sampling[J].The Annals of Occupational Hygiene: An International Journal Published for the British Occupational Hygiene Society,20133(3):328-344.
[4] Shrestha, Babina;Anderson, Todd A.;Acosta-Martinez, Veronica;Payton, Paxton;Canas-Carrell, Jaclyn E..The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere[J].Ecotoxicology and Environmental Safety,2015Jun.(Jun.):143-149.
[5] Sun, Weiling;Jiang, Bofeng;Wang, Fei;Xu, Nan.Effect of carbon nanotubes on Cd(II) adsorption by sediments[J].Chemical engineering journal,2015:645-653.
[6] Weifeng Chen;Dongqiang Zhu;Shourong Zheng.Catalytic Effects of Functionalized Carbon Nanotubes on Dehydrochlorination of 1,1,2,2-Tetrachloroethane[J].Environmental Science & Technology: ES&T,20147(7):3856-3863.
[7] K.Mackenzie;J.Battke;F.-D.Kopinke.Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds Part 1.-y-Hexachlorocyclohexane[J].Catalysis Today,20050(0):148-153.
[8] Katrin Mackenzie;Juergen Battke;Robert Koehler;Frank-Dieter Kopinke.Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds Part 2.1,1,2,2-Tetrachloroethane[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,20053/4(3/4):171-179.
[9] Ritu Singh;Virendra Misra;Mohana Krishna Reddy Mudiam;Lalit Kumar Singh Chauhan;Rana Pratap Singh.Degradation of 7-HCH spiked soil using stabilized Pd/Fe~0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions[J].Journal of hazardous materials,2012Oct.30(Oct.30):355-364.
[10] John Vijgen;P. C. Abhilash;Yi Fan Li;Rup Lal;Martin Forter;Joao Torres;Nandita Singh;Mohammad Yunus;Chongguo Tian;Andreas Schaffer;Roland Weber.Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers[J].Environmental Science and Pollution Research,20112(2):152-162.
[11] Chakraborty, Paromita;Zhang, Gan;Li, Jun;Sivakumar, A.;Jones, Kevin C..Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: Assessment of air-soil exchange[J].Environmental Pollution,2015Sep.(Sep.):74-80.
[12] K. Ignatowicz.A mass transfer model for the adsorption of pesticide on coconut shell based activated carbon[J].International Journal of Heat and Mass Transfer,201123/24(23/24):4931-4938.
[13] Fei Lian;Chun Chang;Yang Du;Lingyan Zhu;Baoshan Xing;Chang Liu.Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes[J].环境科学学报(英文版),2012(09):1549-1558.
[14] Li, S.;Elliott, D.W.;Spear, S.T.;Ma, L.;Zhang, W.-X..Hexachlorocyclohexanes in the environment: Mechanisms of dechlorination[J].Critical reviews in environmental science and technology,201117/20(17/20):1747-1792.
[15] Peng Zhang;Hongwen Sun;Li Yu;Tieheng Sun.Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars[J].Journal of hazardous materials,2013Jan.15(Jan.15):217-224.
[16] Qiang Yu;Ruiqi Zhang;Shubo Deng;Jun Huang;Gang Yu.Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study[J].Water research: A journal of the international water association,20094(4):1150-1158.
[17] Fei-fei Liu;Jin-lin Fan;Shu-guang Wang.Adsorption of natural organic matter analogues by multi-walled carbon nanotubes: Comparison with powdered activated carbon[J].Chemical engineering journal,2013:450-458.
[18] JUNYI CHEN;WEI CHEN;DONGQIANG ZHU.Adsorption of Nonionic Aromatic Compounds to Single-Walled Carbon Nanotubes: Effects of Aqueous Solution Chemistry[J].Environmental Science & Technology: ES&T,200819(19):7225-7230.
[19] S. Agnihotri;J.P.B. Mota;M. Rostam-Abadi.Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles[J].Carbon: An International Journal Sponsored by the American Carbon Society,200612(12):2376-2383.
[20] BO PAN;BAOSHAN XING.Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes[J].Environmental Science & Technology: ES&T,200824(24):9005-9013.
[21] Xilong Wang;Yan Liu;Shu Tao.Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes[J].Carbon: An International Journal Sponsored by the American Carbon Society,201013(13):3721-3728.
[22] T.Ramanathan;F.T.Fisher;R.S.Ruoff;L.C.Brinson.Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems[J].Chemistry of Materials,20056(6):1290-1295.
[23] SEN YAN;BIN HUA;ZHENGYU BAO.Uranium(VI) Removal by Nanoscale Zerovalent Iron in Anoxic Batch Systems[J].Environmental Science & Technology: ES&T,201020(20):7783-7789.
[24] Muller EA.;Gubbins KE..Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces[J].Carbon: An International Journal Sponsored by the American Carbon Society,199810(10):1433-1438.
[25] Muszynski, Pawel;Brodowska, Marzena S..Effects of Potassium, Ammonium, and Calcium Chlorides on the Sorption of Metamitron in Soil[J].Polish Journal of Environmental Studies.,20146(6):2125-2135.
[26] Shujuan Zhang;Ting Shao;S. Sule Kaplan Bekaroglu;Tanju Karanfil.Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry[J].Water research: A journal of the international water association,20106(6):2067.
[27] WEI CHEN;LIN DUAN;LILIN WANG.Adsorption of Hydroxyl- and Amino-Substituted Aromatics to Carbon Nanotubes[J].Environmental Science & Technology: ES&T,200818(18):6862-6868.
[28] Hui Hu;Yingchun Ni;Vedrana Montana;Robert C. Haddon;Vladimir Parpura.Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth[J].Nano letters,20043(3):507-511.
[29] Dong, Wei Hong;Zhang, Pan;Lin, Xue Yu;Zhang, Yan;Taboure, Aboubacar.Natural attenuation of 1,2,4-trichlorobenzene in shallow aquifer at the Luhuagang's landfill site, Kaifeng, China[J].Science of the Total Environment,2015:216-222.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%