以低温退火制得的TiO2纳米管和三聚氰胺为原料,经过一步煅烧制备Ti3+自掺杂TiO2纳米管/g-C3N4复合材料.采用热重分析(TGA)、X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的热稳定性、组成、结晶性、形貌、化学价态和光学性能等进行了表征.结果表明,将H2Ti3O7预处理后再与三聚氰胺混合热处理,产物是Ti3+自掺杂TiO2纳米管/g-C3N4复合材料,而未经预处理的H2Ti3O7与三聚氰胺混合后热处理得到的是Ti3+自掺杂TiO2纳米颗粒/g-C3N4复合材料.罗丹明B((RhB)水溶液为模拟废水,以300 W氙灯(λ>420 nm)为光源,研究了所得产物的可见光催化降解性能.结果表明,与纯的TiO2和g-C3 N4相比,Ti3+自掺杂TiO2纳米管/g-C3N4复合材料具有最佳的光催化降解性能,光催化降解80 min时,对RhB的降解率达98.4%.这得益于Ti3+及TiO2-x纳米管与g-C3N4构筑的异质结提高了材料对可见光的响应性能,加快了光生电子的传输和分离,降低了电子和空穴的复合几率.
Ti3+ self-doped TiO2 nanotube/g-C3N4 heterojunctions were successfully synthesized by one-step calcination method using TiO2 nanotube obtained by low temperature annealing and melamine as the raw materials.Thermogravimetry (TGA),X-ray diffraction (XRD),transmission electron microscopy (TEM),X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used to characterize the thermostability,crystallinity structure,morphology,chemical state and optical property of the as-prepared Ti3+ self-doped TiO2 nanotube/g-C3N4 heterojunctions.The results indicated that Ti3+ self-doped TiO2 nanotube/g-C3N4 heterojunctions were obtained when H2Ti3O7 was pretreated.Ti3+ self-doped TiO2 nanoparticles/g-C3N4 heterojunctions were obtained by directly mixed H2 Ti3 O7 and melamine and then heat treated the mixture.The photocatalytic activities of the heterojunctions were studied by degrading rhodamine B (RhB) under a 300 W xenon lamp (λ >420 nm).The results indicated that the Ti3+ self-doped TiO2 nanotube/g-C3N4 composites exhibited excellent photocatalytic activities than the pure g-C3N4 and TiO2 nanotubes.98.4% degradation efficiency was achieved after 80 min photocatalytic degradation by using the Ti3+ self-doped TiO2 nanotube/g-C3 N4 heterojunction as photocatalyst.The high efficiency might be due to the existence of Ti3+ and the heterojunction structures between TiO2-x nanotubes and g-C3 N4 nanosheets,which were helpful for extending visible light reponse and preventing the recombination of photogenerated electrons and holes.
参考文献
[1] | 杨静;崔世海;陈慧慧;闵丹丹;练鸿振.磁载纳米TiO2复合光催化材料的研究进展[J].环境化学,2014(11):1930-1935. |
[2] | Wang, Qingyao;Qiao, Jianlei;Jin, Rencheng;Xu, Xiaohui;Gao, Shanmin.Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties[J].Journal of Power Sources,2015Mar.1(Mar.1):480-485. |
[3] | Tachikawa T;Fujitsuka M;Majima T.Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200714(14):5259-5275. |
[4] | 李琪;韩立娟;刘刚;陈作雁;安兴才.钒-氮共掺杂 TiO2的合成、表征及光催化性能?[J].环境化学,2013(6):1073-1080. |
[5] | Takashi Kamegawa;Daiki Yamahana;Hiromi Yamashita.Graphene Coating of TiO2 Nanoparticles Loaded on Mesoporous Silica for Enhancement of Photocatalytic Activity[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201035(35):15049-15053. |
[6] | 王潇彤;李延敏;刘新;高善民;黄柏标;戴瑛.Ti3+自掺杂的纳米TiO2的制备及其可见光催化性能[J].催化学报,2015(3):389-399. |
[7] | Xin Liu;Shanmin Gao;Hui Xu.Green synthetic approach for Ti~(3+) self-doped TiO_(2-x) nanoparticles with efficient visible light photocatalytic activityt[J].Nanoscale,20135(5):1870-1875. |
[8] | Zhuo Wan;Gui-Fang Huang;Wei-Qing Huang;Chao Jiao;Xin-Guo Yan;Zheng-Mei Yang;Qinglin Zhang.The enhanced photocatalytic activity of Ti~(3+) self-doped TiO_2 by a reduction method[J].Materials Letters,2014May.1(May.1):33-36. |
[9] | Jinshui Zhang;Xiufang Chen;Kazuhiro Takanabe.Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymerization[J].Angewandte Chemie,20102(2):441-444. |
[10] | Yan, H.;Yang, J.;Ma, G.;Wu, G.;Zong, X.;Lei, Z.;Shi, J.;Li, C..Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J].Journal of Catalysis,20092(2):165-168. |
[11] | Li Xu;Jiexiang Xia;Hui Xu;Sheng Yin;Kun Wang;Liying Huang;Leigang Wang;Huaming Li.Reactable ionic liquid assisted solvothermal synthesis of graphite-like C_3N_4 hybridized α-Fe_2O_3 hollow microspheres with enhanced supercapacitive performance[J].Journal of Power Sources,2014Jan.1(Jan.1):866-874. |
[12] | Jiaguo Yu;Shuhan Wang;Jingxiang Low.Enhanced photocatalytlc performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the. decomposition of formaldehyde In air[J].Physical chemistry chemical physics: PCCP,201339(39):16883-16890. |
[13] | Juan Wang;Wei-De Zhang.Modification of TiO_2 nanorod arrays by graphite-like C_3N_4 with high visible light photoelectrochemical activity[J].Electrochimica Acta,2012:10-16. |
[14] | Li, Kai;Gao, Shanmin;Wang, Qingyao;Xu, Hui;Wang, Zeyan;Huang, Baibiao;Dai, Ying;Lu, Jun.In-Situ-Reduced Synthesis of Ti3+ Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation[J].ACS applied materials & interfaces,201517(17):9023-9030. |
[15] | He, Yiming;Zhang, Lihong;Fan, Maohong;Wang, Xiaoxing;Walbridge, Mike L.;Nong, Qingyan;Wu, Ying;Zhao, Leihong.Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2015:175-184. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%