欢迎登录材料期刊网

材料期刊网

高级检索

碘代消毒副产物(Ⅰ-DBPs)已经在越来越多的城市净水厂出水中被检出.Ⅰ-DBPs的生成是由于碘源(包括碘化物和碘代显影剂)、氧化剂、前体物质(主要是天然有机物)之间相互作用的结果.尽管从目前来看,Ⅰ-DBPs的浓度维持在ng· L-1-μg· L-1的数量级,但是相比氯代、溴代消毒副产物,其具有更强的细胞毒性和遗传毒性,因此研究影响Ⅰ-DBPs生成的因素及其在净水工艺中行之有效的控制措施就显得尤为重要.对碘源、毒性特征、生成机制、控制措施进行了综述.

参考文献

[1] Richardson SD.;Caughran TV.;Chen PH.;Collette TW. Schenck KM.;Lykins BW.;Rav-Acha C.;Glezer V.;Thruston AD..Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine[J].Water, air and soil pollution,20001/4(1/4):95-102.
[2] Susan D. Richardson;Michael J. Plewa;Elizabeth D. Wagner;Rita Schoeny;David M. DeMarini.Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research[J].Mutation Research. Reviews in Mutation Research,20071/3(1/3):178-242.
[3] Susan D. Richardson;Jane Ellen Simmons;Glenn Rice.Disinfection byproducts: the next generation[J].Environmental Science & Technology: ES&T,20029(9):198A-205A.
[4] SUSAN D. RICHARDSON;FRANCESCA FASANO;J. JACKSON ELLINGTON.Occurrence and Mammalian Cell Toxicity of lodinated Disinfection Byproducts in Drinking Water[J].Environmental Science & Technology: ES&T,200822(22):8330-8338.
[5] Michael J.Plewa;Elizabeth D.Wagner;Susan D.Richardson;Alfred D.Thruston;Yin-Tak Woo;A.Bruce Mckague.Chemical and Biological Characterization of Newly Discovered lodoacid Drinking Water Disinfection Byproducts[J].Environmental Science & Technology: ES&T,200418(18):4713-4722.
[6] Bichsel Y.;von Gunten U..Formation of iodo-trihalomethanes during disinfection and oxidation of iodide containing waters[J].Environmental Science & Technology: ES&T,200013(13):2784-2791.
[7] 覃操;徐斌;夏圣骥;高乃云;李大鹏;田富箱.饮用水中碘类消毒副产物特性与控制研究进展[J].给水排水,2010(9):115-120.
[8] 魏源源.饮用水消毒碘代副产物的毒理学研究及其形成过程[J].癌变·畸变·突变,2010(05):404-408.
[9] GUANGHUI HUA;DAVID A.RECKHOW;JUNSUNG KIM.Effect of Bromide and Iodide Ions on the Formation and Speciation of Disinfection Byproducts during Chlorination[J].Environmental Science & Technology: ES&T,20069(9):3050-3056.
[10] Bichsel Yves;Von Gunten Urs.Oxidation of iodide and hypoiodous acid in the disinfection of natural waters[J].Environmental Science & Technology: ES&T,199922(22):4040-4045.
[11] Moran JE.;Oktay SD.;Santschi PH..Sources of iodine and iodine 129 in rivers - art. no. 1149[J].Water Resources Research,20028(8):1149-0.
[12] Perez S;Barcelo D.Fate and occurrence of X-ray contrast media in the environment[J].Analytical and bioanalytical chemistry,20074(4):1235-1246.
[13] Sandra Perez;Peter Eichhorn;Mary Dawn Celiz;Diana S. Aga.Structural Characterization of Metabolites of the X-ray Contrast Agent Iopromide in Activated Sludge Using Ion Trap Mass Spectrometry[J].Analytical chemistry,20066(6):1866-1874.
[14] Echeverría, S.;Borrull, F.;Fontanals, N.;Pocurull, E..Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry[J].Talanta: The International Journal of Pure and Applied Analytical Chemistry,2013:931-936.
[15] Jennifer Lynne Kormos;Manoj Schulz;Thomas A. Ternes.Occurrence of lodinated X-ray Contrast Media and Their Biotransformation Products in the Urban Water Cycle[J].Environmental Science & Technology: ES&T,201120(20):8723-8732.
[16] Thomas A. Ternes;Roman Hirsch.Occurrence and behavior of x-ray contrast media in sewage facilities and the aquatic environment[J].Environmental Science & Technology: ES&T,200013(13):2741-2748.
[17] JENNIFER LYNNB KORMOS;MANOI SCHULZ;HANS-PETER E. KOHLER.Biotransformation of Selected lodinated X-ray Contrast Media and Characterization of Microbial Transformation Pathways[J].Environmental Science & Technology: ES&T,201013(13):4998-5007.
[18] Waldemar Ens;Frank Senner;Benjamin Gygax;G?tz Schlotterbeck.Development, validation, and application of a novel LC-MS/MS trace analysismethod for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water[J].Analytical and bioanalytical chemistry,201412(12):2789-2798.
[19] Seitz W;Jiang JQ;Schulz W;Weber WH;Maier D;Maier M.Formation of oxidation by-products of the iodinated X-ray contrast medium iomeprol during ozonation[J].Chemosphere: Environmental toxicology and risk assessment,20087(7):1238-1246.
[20] Stephen E. Duirk;Cristal Lindell;Christopher C. Cornelison.Formation of Toxic lodinated Disinfection By-ProductS from Compounds Used in Medical Imaging[J].Environmental Science & Technology: ES&T,201116(16):6845-6854.
[21] Krasner SW;Weinberg HS;Richardson SD;Pastor SJ;Chinn R;Sclimenti MJ;Onstad GD;Thruston AD.Occurrence of a new generation of disinfection byproducts[J].Environmental Science & Technology: ES&T,200623(23):7175-7185.
[22] Plewa MJ;Muellner MG;Richardson SD;Fasanot F;Buettner KM;Woo YT;Mckague AB;Wagner ED.Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts[J].Environmental Science & Technology: ES&T,20083(3):955-961.
[23] Muellner MG;Wagner ED;McCalla K;Richardson SD;Woo YT;Plewa MJ.Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?[J].Environmental Science & Technology: ES&T,200726(26):645-651.
[24] Mengting Yang;Xiangru Zhang.Comparative Developmental Toxicity of New Aromatic Halogenated DBPs in a Chlorinated Saline Sewage Effluent to the Marine Polychaete Platynereis dumerilii[J].Environmental Science & Technology: ES&T,201319(19):10868-10876.
[25] BEATRlZ CANCHO;PRANCESC VENTURA;MATERESA GALCERAN.DETERMINATION, SYNTHESIS AND SURVEY OF IODINATED TRIHALOMETHANES IN WATER TREATMENT PROCESSES[J].Water research: A journal of the international water association,200013(13):3380-3390.
[26] Allard, S.;Charrois, J.W.A.;Joll, C.A.;Heitz, A..Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry[J].Journal of chromatography, A: Including electrophoresis and other separation methods,2012:15-21.
[27] Dominguez-Tello, A.;Arias-Borrego, A.;Garcia-Barrera, T.;Gomez-Ariza, J. L..Application of hollow fiber liquid phase microextraction for simultaneous determination of regulated and emerging iodinated trihalomethanes in drinking water[J].Journal of chromatography, A: Including electrophoresis and other separation methods,2015:8-16.
[28] Zhang, Tian-Yang;Xu, Bin;Hu, Chen-Yan;Lin, Yi-Li;Lin, Lin;Ye, Tao;Tian, Fu-Xiang.A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes[J].Water research: A journal of the international water association,2015Jan.1(Jan.1):394-403.
[29] Ye, Tao;Xu, Bin;Wang, Zhen;Zhang, Tian-Yang;Hu, Chen-Yan;Lin, Lin;Xia, Sheng-Ji;Gao, Nai-Yun.Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter[J].Water research: A journal of the international water association,2014Dec.1(Dec.1):390-398.
[30] The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates[J].Water research: A journal of the international water association,200917(17):4177-4186.
[31] Yuanyuan Wei;Yan Liu;Luming Ma;Hongwu Wang;Jinhong Fan;Xiang Liu;Rui-hua Dai.Speciation and formation of iodinated trihalomethane from microbially derived organic matter during the biological treatment of micro-polluted source water[J].Chemosphere: Environmental toxicology and risk assessment,201311(11):1529-1535.
[32] Chad J. Seidel;Michael J. McGuire;R. Scott Summers;Steve Via.Have utilities switched to chloramines?[J].Journal - American Water Works Association,200510(10):87-97.
[33] Darryl B. Jones;Aysenur Saglam;Hocheol Song;Tanju Karanfil.The impact of bromide/iodide concentration and ratio on iodinated trihalomethane formation and speciation[J].Water research: A journal of the international water association,20121(1):11-20.
[34] Lengyel I;Li J;Kustin K;Epstein IR.RATE CONSTANTS FOR REACTIONS BETWEEN IODINE- AND CHLORINE-CONTAINING SPECIES - A DETAILED MECHANISM OF THE CHLORINE DIOXIDE/CHLORITE-IODIDE REACTION[J].Journal of the American Chemical Society,199615(15):3708-3719.
[35] Guanghui Hua;David A. Reckhow.Comparison of disinfection byproduct formation from chlorine and alternative disinfectants[J].Water research: A journal of the international water association,20078(8):1667-1678.
[36] Fabian I.;Gordon G..THE KINETICS AND MECHANISM OF THE CHLORINE DIOXIDE IODIDE ION REACTION[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,199712(12):2494-2497.
[37] Tao Ye;Bin Xu;Yi-Li Lin;Chen-Yan Hu;Lin lin;Tian-Yang Zhang;Nai-Yun Gao.Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide[J].Water research: A journal of the international water association,20139(9):3006-3014.
[38] Chen-Yu Chang;Yung-Hsu Hsieh;Sheng-Sheng Hsu.The formation of disinfection by-products in water treated with chlorine dioxide[J].Journal of hazardous materials,20001/2(1/2):89-102.
[39] Zhao, Cen;Arroyo-Mora, Luis E.;DeCaprio, Anthony P.;Sharma, Virender K.;Dionysiou, Dionysios D.;O'Shea, Kevin E..Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment[J].Water research: A journal of the international water association,2014Dec.15(Dec.15):144-153.
[40] Xue, Shuang;Zhao, Qingliang;Wei, Liangliang;Ma, Xiping;Wen, Yang;Zhang, Zhaohong.Reduction of dissolved organic matter in secondary municipal effluents by enhanced coagulation[J].Environmental Progress & Sustainable Energy,20153(3):751-760.
[41] Goksen Gapar;Ulku Yetis.Removal of THM precursors by GAC: Ankara case study[J].Water research: A journal of the international water association,20025(5):1379-1384.
[42] Mohamed I. Badawy;Tarek A. Gad-Allah;Mohamed E.M. Ali;Yeoman Yoon.Minimization of the formation of disinfection by-products[J].Chemosphere: Environmental toxicology and risk assessment,20123(3):235-240.
[43] Wenhai Chu;Naiyun Gao;Daqiang Yin;Yang Deng;Michael R. Templeton.Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products[J].Chemosphere: Environmental toxicology and risk assessment,201211(11):1087-1091.
[44] Bin Xu;Nai-Yun Gao;Xiao-Feng Sun.Characteristics of organic material in Huangpu River and treatability with the O3-BAC process[J].Separation and Purification Technology,20072(2):348-355.
[45] SARI METSAMUURONEN;MIKA SILLANPAA;AMIT BHATNAGAR.Natural Organic Matter Removal from Drinking Water by Membrane Technology[J].Separation and Purification Reviews,20141/4(1/4):1-61.
[46] E.-E. Chang;Yu-Wen Chen;Yi-Li Lin;Pen-Chi Chiang.Reduction of natural organic matter by nanofiltration process[J].Chemosphere: Environmental toxicology and risk assessment,20099(9):1265-1272.
[47] Angeles de la Rubia;Manuel Rodriguez;Victor M. Leon;Daniel Prats.Removal of natural organic matter and THM formation potential by ultra- and nanofiltration of surface water[J].Water research: A journal of the international water association,20083(3):714-722.
[48] Hassen A.;Ouzari H.;Cherif M.;Boudabous A.;Damelincourt JJ.;Mahrouk M..UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20002(2):141-150.
[49] Liu, W.;Zhang, Z.;Yang, X.;Xu, Y.;Liang, Y..Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water[J].Science of the Total Environment,2012:576-584.
[50] Xiao, Yongjun;Zhang, Lifeng;Yue, Junqi;Webster, Richard D.;Lim, Teik-Thye.Kinetic modeling and energy efficiency of UV/H2O2 treatment of iodinated trihalomethanes[J].Water research: A journal of the international water association,2015May 15(May 15):259-269.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%