欢迎登录材料期刊网

材料期刊网

高级检索

基于人工神经网络和遗传算法,结合177组不锈钢复合板实测数据,构建不锈钢复合板剪切强度模型.研究确定不锈钢铬当量、铬镍当量比、复合板覆层厚度以及基材厚度为网络输入量,复合板剪切强度为输出量,隐含层节点数由试探寻优法确定,优化网络结构为4-7-1;比较Levenberg-Marquardt、Quick-Propagation、Standard Back-Propagation算法的训练误差、测试误差及计算迭代步数,确定以误差最小、计算速度最快的LM算法训练网络;另外,利用提前终止法避免ANN模型产生的过拟合的问题;在此基础上,引入遗传算法进一步优化ANN网络的权值和阈值,使得复合板剪切强度预测值与实测值相关系数达到0.997;将所构建模型用于实际不锈钢复合板剪切强度的预测,与实测值相近,进一步验证预测模型的有效性和可靠性.

参考文献

[1] 焦少阳,董建新,张麦仓,郑磊.双金属热轧复合的界面结合影响因素及结合机理[J].材料导报,2009(01):59-62.
[2] 吴维,温彤,蒲思洪.层状复合板层间剪切强度的研究现状[J].机械制造,2009(01):34-37.
[3] 肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:49-53.
[4] Mehmet Sirac Ozerdem;Sedat Kolukisa .Artificial Neural Network Approach To Predict The Mechanical Properties Of Cu-sn-pb-zn-ni Cast Alloys[J].Materials & design,2009(3):764-769.
[5] 乌日根,董俊慧,王玉荣.基于神经网络的RE-Ni-Cu合金铸铁腐蚀性能预测[J].兵器材料科学与工程,2009(01):28-31.
[6] S.H. Mousavi Anijdan;A. Bahrami;H.R. Madaah Hosseini .Using genetic algorithm and artificial neural network analyses to design an Al-Si casting alloy of minimum porosity[J].Materials & Design,2006(7):605-609.
[7] 甘忠,成武冬,许旭东,潘栋杰.BP神经网络预测铝合金应力松弛量研究[J].兵器材料科学与工程,2009(02):35-38.
[8] 邹德宁,李娇,李云华,张子义.神经网络的BP算法研究高速钢轧辊的热处理工艺[J].铸造技术,2007(11):1518-1521.
[9] Zhiyu Chen;Dening Zou;Junhui Yu;Ying Han.Artificial Neural Network Approach to Predict Mechanical Properties of 301 Austenitic Stainless Steel[J].Materials Science Forum,2010:145-148.
[10] M. Zakeri;A. Bahrami;S.H. Mousavi Anijdan .Using genetic algorithm in heat treatment optimization of 17-4PH stainless steel[J].Materials & Design,2007(7):2034-2039.
[11] H. Mirzadeh;A. Najafizadeh .ANN modeling of strain-induced martensite and its applications in metastable austenitic stainless steels[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):352-355.
[12] Blanco A;Delgado M;Pegalajar MC .A real-coded genetic algorithm for training recurrent neural networks.[J].Neural Networks: The Official Journal of the International Neural Network Society,2001(1):93-105.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%