欢迎登录材料期刊网

材料期刊网

高级检索

电流变液是一种智能材料,其流变特性在电场作用下可以快速、连续地调节,因而具有广阔的工业应用前景.在简要介绍电流变液特性的基础上,着重介绍了近年来发明的一类新型电流变液"极性分子型电流变液".该电流变液的屈服应力比传统电流变液大1个数量级以上,且屈服应力与外电场强度呈正比关系,而不是传统电流变液的二次方关系.这些现象都无法用传统的电流变液理论(介电极化理论)进行解释.介绍了一种新的电流变液理论模型.该模型指出了颗粒上吸附的极性分子是产生电流变液高屈服应力的主要原因,并能解释近年来出现的一系列高性能电流变液的机理.

参考文献

[1] 魏宸官.电流变技术[M].北京:北京理工大学出版社,2000
[2] 郝田 .电流变学研究进展[J].力学进展,1994,24(03):315.
[3] Choi C S;Park S J et al.Carbon nanotube/polyaniline nano composites and their electrorheological characteristics under an applied electric field[J].Current Applied Physics,2007,7:352.
[4] Hyon-Jee Lee;Byung Doo Chin et al.Surfactant effect on the stability and electrorheological properties of polyaniline particle suspension[J].J Coll Interf Sei,1998,206:424.
[5] Kanbarm .[P].EU Pat,0342041 Al,1989-11-15.
[6] Zhang Shengbin;William T Winter .Water-activated cellu lose-based electrorheological fluids[J].Cellulose,2005,12:135.
[7] Tao R;Jiang Q .Three-dimensional structure of induced elec trorheological solid[J].Physical Review Letters,1991,67:398.
[8] Tao R;Jiang Q;Sim H K .Finite-element analysis of electro static interactions in electrorheotogical fluids[J].Phys Rev-E,1995,52:2727.
[9] Davis LC. .TIME-DEPENDENT AND NONLINEAR EFFECTS IN ELECTRORHEOLOGICAL FLUIDS[J].Journal of Applied Physics,1997(4):1985-1991.
[10] Ma H R;Wen W J;Tam W Y et al.Frequency dependent electrorheological properties:Origin and bounds[J].Physical Review Letters,1996,77:2499.
[11] Ma HR.;Wen WJ.;Tam WY.;Sheng P. .Dielectric electrorheological fluids: theory and experiment [Review][J].Advances in physics,2003(4):343-383.
[12] Weijia Wen;Hongru Ma;Wing Yim Tam;Ping Sheng .Frequency and water content dependencies of electrorheological properties[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1997(2):R1294-R1297.
[13] Zhang Shengbin;Williarn T Winter;Arthur J Stipanovic .Water-activated cellulose-based electrorheological fluids[J].Cellulose,2005,12:135.
[14] Korobko EV;Eshchenko LS;Bedik NA;Zhuk GM .Study of electrorheological sensitivity of suspensions based on hydrated aluminum oxides[J].Colloid journal,2007(2):180-184.
[15] Zhang YL.;Lan YC.;Lu KQ.;Liu W.;Ma Y. .The electrorheological behavior of complex strontium titanate suspensions[J].Applied physics letters,1998(10):1326-1328.
[16] Zhang Y L;Lu K Q et al.Electrorheological fluid with an extraordinarily high yield stress[J].Applied Physics Letters,2002,80:888.
[17] W.en W J;Huang X X et al.The giant eleetrorheologieal effect in suspensions of nanoparticles[J].Nature Materials,2003,2:727.
[18] Lu KQ;Shen R;Wang XZ;Sun G;Wen WJ .The electrorheological fluids with high shear stress[J].International Journal of Modern Physics, B. Condensed Matter Physics, Statistical Physics, Applied Physics,2005(7/9):1065-1070.
[19] Wang XZ;Rong S;Wen WJ;Lu KQ .High performance calcium titanate nanoparticle ER fluids[J].International Journal of Modern Physics, B. Condensed Matter Physics, Statistical Physics, Applied Physics,2005(7/9):1110-1113.
[20] Gong X Q;Wu J B;Huapg X X et al.Influence of liquid phased on nanoparticle-based giant electrorheological fluid[J].Nanotechnology,2008,19:1.
[21] Yin JB;Zhao XP .Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer[J].Chemical Physics Letters,2004(4-6):393-399.
[22] Wang BX;Zhao Y;Zhao XP .The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,2007(1/3):27-33.
[23] Cao JG;Shen M;Zhou LW .Preparation and electrorheological properties of triethanolamine-modified TiO2[J].International Journal of Quantum Chemistry,2006(5):1565-1568.
[24] Hou Jiaxiang;Shi Lei;Zhu Qingren .Electrorheological properties and structure of(BaTiO(C2O4)2/YH2CONH2)[J].Journal of Solid State Chemistry,2006,179:1874.
[25] Lu KQ;Shen R;Wang XZ;Sun G;Wen WJ;Liu JX .Polar molecule dominated electrorheological effect[J].Chinese physics,2006(11):2476-2480.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%