特殊钢是针对客户提出的质量要求,钢厂不断改进工艺,逐步提高成分、尺寸精确度和洁净度的各类钢的总称。钢中总氧量 [TO]是衡量钢洁净度的重要标识,对于不同的钢种,其控制要求也不尽相同。在脱氧精炼过程中,存在着脱氧元素-钢中溶解氧、钢-渣、钢液-夹杂物、钢液-耐火材料、渣-耐火材料的反应与平衡,对钢中夹杂物的数量、组成和形态具有重要影响。通过热力学计算,比较了不同脱氧剂的脱氧能力,并介绍了典型特殊钢种(轴承钢、弹簧钢、帘线钢、电工钢、易切削钢等)精炼过程中的脱氧及夹杂物控制,分析和讨论了不同脱氧元素与钢液、熔渣以及耐火材料之间的相互作用机制。
Special steel is a general designation of certain types of steel with higher cleanness upgraded gradually by steel factories with promotion of process and equipment step by step according to the customer demands on product quality. The total oxygen content in steel is extremely important for its cleanness, the requirements of total oxygen for different steel is different. In the deoxidation refining process, the reactions will take place among the deoxidation elements, dissolved oxygen in the steel, molten steel, slag, inclusions, and refractory and evolve into balance. These reactions have an important impact on the quantity, composition and morphology of inclusions in the steel. So we make comparison of the deoxidation ability with different deoxidation elements by thermodynamic calculation. The deoxidation mechanism and the control of inclusions during the refining process of typical steels (bearing steel, spring steel, cord steel, electrical steel, free cutting steel etc.) were also introduced. The mechanism of interaction among different deoxidation elements, molten steel, slag and refractory was analyzed and discussed.
参考文献
[1] | |
[2] | 蔡开科.转炉-精炼-连铸过程钢中氧的控制.钢铁.2004,39(8):50-57[2] K.J.Graham,G.A.Irons. Toward Integrated Ladle Metallurgy Control. Iron and Steel Technology. 2009, 6(1):164-173[3] 日本铁钢协会. 铁钢便览.丸善株式会社,1981[4] 周宏,胡兵,何维祥,程小利,马立华.低碳低硅钢中氧化物夹杂的控制.炼钢,2012,28(2):29-31[5] 薛正良,高俊波,齐江华,李正邦,张家雯.真空感应熔炼过程炉衬向钢液供氧现象的研究.特殊钢.2005,26(1):6-8[6] Yoshiyuki Kato, Yoshio Nuri. Present state of spinel inclusions in steel and its technological issues . Sanyo Technical Report, 1997, 4(1): 63-70[7] 徐匡迪. 关于洁净钢的若干基本问题. 金属学报,2009, 45(3):257-269[8] Yoshiyuki Kato. Steelmaking Technology of Extremely Purified Steel. Sanyo Technical Report, 1995, 2(1): 15-21[9] 耿克,吴明,翁韶华,黄煌. 特殊钢. 2008, 29(5):54-55[10] B.-H.Yoon, K.-H.Heo, J.-S.Kim, H.-S.Sohn. Improvement of Steel Cleanliness by Controlling Slag Composition. Ironmaking and steelmaking,2002,29(3):215-218[11] J.Kevin Cotchen. Clean Steel Metallurgy.AISE Steel Technology,2003,(3):40-46[12] S. Maeda, T. Soejima, T. Saito, H. Matsumoto, H. Fujimoto, T. Mimura. Shape Control of Inclusions in Wire Rods for High Tensile Tire Cord by Refining with Synthetic Slag.1989 Steelmaking conference proceedings, 379-385[13] Jun Kawahara,Koji Tanabe, Toshio Banno, Masashi Yoshida.Advance of Valve Spring Steel.Wire Journal International.1992,(10):55-61[14] 申勇,申斌,吴静,唐武峰.弹簧钢的技术发展及生产工艺现状.金属制品,2009,35(3):22-25[15] 郑申.轿车用弹簧钢丝专用线材质量要求及国产化前景.金属制品.1997,23(5):1-6[16] Takahiro Kushida, Yoshihiko Higuchi, Mitshiro Numata. Advanced Technologies of High Strength Linepipe for Sour Service. The Sumitomo Search,1996,58,(5):24-31[17] 徐匡迪. 油、气管线用钢的性能要求与工艺技术进展.上海金属. 1986,8(4):1-11[18] 蒋育翔.X80管线钢夹杂物控制工艺的研究.特殊钢.2011,32(1):36-39[19] Yo-ichi,Seikoh Nara,Yoshiei Kato, Mamoru Suda. Shape Control of Alumina Inclusions by Double Calcium Addition Treatment. Tetsu-to-Hagané, 2007, 93(5):15-21[20] Yasuhiro Ehara, Seiji Yokoyama,Masahiro Kawakami. Formation Mechanism of Inclusions Containing MgO?Al2O3 Spinel in Type 304 Stainless Steel. Tetsu-to-Hagané, 2007, 93(3):8-14[21] Jong wan KIM, Sun koo KIM, Dong sik KIM. Formation Mechanism of Type 304 Stainless Steel Ca-Si-Al-Mg-Ti-O Inclusions In Type 304 Stainless Steel. ISIJ International, 1996, 36, Supplement: S140-143[22] 何忠治. 电工钢[M]. 北京:冶金工业出版社. 1996[23] 肖丽俊. 薄板坯连铸连轧流程制造高磁感取向硅钢的实验研究. 北京:钢铁研究总院博士论文, 2010[24] 郑庆,雷思源,郑少波,蒋国昌. 取向硅钢脱氧后平衡氧位的计算和试验验证. 中国稀土学报. 2004, 22(8):265-267[25] 张峰,陈晓,庞春敏. 炼钢工艺对0.1%Si硅钢铁损的影响. 特钢技术. 2010,16(1):34-36[26] Y. Kurosaki, M. Shiozaki, K. Higashine, M. Sumimoto. Effect of Oxide shape on Magnetic Properties of Semiprocessed Nonoriented Electrical Steel Sheets. ISIJ International, 1999, 39(6):607-613[27] 袁武华,王峰. 国内外易切削钢的研究现状和前景. 钢铁研究,2008,36(5):56-62[28] 段飞虎,朱荣,林腾昌. 硫系易切削钢中氧含量对硫化物形成的影响.钢铁研究学报,2012, 24(1):36-43[29] 刘乐东. 硫系易切削钢氧化物和硫化物变性的分析. 特钢技术,2011, 17(2):40-42[30] H. Todoroki, Y. Kanbe, K. Mizuno. Technology to Control Inclusions in Stainless Steels and High Ni Alloys. CAMP-ISIJ, 2003, 16: 844[31] T. Nishi, K. Shimme. Formation of Spinel Inclusions in Molten Steel under Al Deoxidation with Slags. Tetsu-to-Hagané, 1998, 84(12):837-843[32] H. Todoroki, K. Mizuno. Variation of Inclusion Composition in 304 Stainless Steel Deoxidized with Aluminum. ISS Transaction, Iron Steelmaker, 2003,30:60[33] 戴文斌,于景坤. 纯净钢冶炼用耐火材料. 材料与冶金学报. 2003, 2(1):3-9[34] Yoshiyasu Shirota. Development of Production Process of Highly Clean Steel. CAMP-ISIJ. 1991, 4:1214-1217[35] Issey Ibuki. Technology to Reduce Nonmetallic Inclusions for Clean Steel. CAMP-ISIJ. 1991, 4:1210-1213[36] Goro Yuasa, Saburo Sugiura, Michihiko Fujine, Jun-Ichi Tsubokura. Effect of Refrctory on Deoxidation in Molten Steel. Transactions ISIJ, 1983,23:B-289 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%