采用动力学分析(DMA)和透射电子显微分析(TEM)等实验方法,研究了含锰45.9%~86.4%(原子分数)范围Mn-Fe-(Cu)合金的反铁磁转变、马氏体相变及高阻尼特性.当锰含量超过71%(原子分数)时合金在变温过程中发生顺磁一反铁磁转变引起模量的剧烈变化.在尼尔点(TN)以下的反铁磁状态~200℃温区内出现一个10-1数量级内耗的高阻尼区.随着含锰量的增加该区内逐渐显示出两个分立的内耗峰.确定了其中高温端的内耗峰为马氏体相变的贡献而低温端的内耗峰则纯属孪晶界的弛豫型内耗.文中测定了弛豫过程的激活能,讨论了合金呈现高阻尼与两种相变的关系.
参考文献
[1] | Bacon G E;Dunmur I W;Smith J H et al.[J].Proceedings of the Royal Society of London,1957,241A:223-238. |
[2] | Hedley J A .[J].Metal Science Journal,1968,2:129-137. |
[3] | ADACHI K;Yamashita T;Taneda Y et al.[J].Philosophical Magazine A:Physics of Condensed Matter:Structure,Defects and Mechanical Properties,1996,73(04):1009-1034. |
[4] | Sugimoto K;Mori T;Shiode S .[J].Metal Science Journal,1973,7:103-108. |
[5] | 衣虎春;葛庭燧 .时效对Mn-Cu-Al三元合金内耗、杨氏模量和力学性能的影响[J].金属学报,1988,24(10):A317. |
[6] | Shimizu K;Okumura Y;Kubo H .[J].Transactions of the Japan Institute of Metals,1982,23(02):53. |
[7] | Tsunoda Y;Wakabayashi N .[J].Journal of The Physical Society of Japan,1981,50(10):3341-3348. |
[8] | Smith J H;VanceER .[J].Journal of Applied Physics,1969,40(12):4853. |
[9] | Laddha S;van Aken D C .[J].Metallurgical and Materials Transactions,1995,26A(04):957-964. |
[10] | Hicks T J;Pepper A R;Smith J H .[J].Journal of Phys C(Proc Phys Soc),1968,1(01):1683-1689. |
[11] | Honda N;Tanji Y;Nakagawa Y .[J].Journal of The Physical Society of Japan,1976,41(06):1931-1937. |
[12] | Hocke U;Warlimont H .[J].Journal of Physics F:Metal Physics,1977,7(07):1145-1155. |
[13] | Hausch G;Schmolz A;Torok E et al.[J].Journal de Physique,1983,C9:471-476. |
[14] | Deng H M, ChungCY, Zhang J H, et al. .To be published[Q]. |
[15] | Chen S C;Chung C Y;Yah C L et al.[J].Materials Science and Engineering,1999,A264:262-268. |
[16] | Cahn R W.Materials Science and Technology[M].Phase transformation in materials. Ed. By Peter Haasen.Weiheim; New York; Basel; Cambridge:VCH,1991 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%