欢迎登录材料期刊网

材料期刊网

高级检索

超临界流体的许多优异特性使其在纳米材料的制备方面展示出越来越大的吸引力、优越性和实用价值.详细综述了超临界流体的特性,利用超临界溶剂热法合成纳米材料的作用机理、过程参数控制(如温度、压力)及合成纳米材料的形貌控制,分析比较了近年来国内外利用超临界溶剂热法合成纳米材料的研究进展,并对未来的发展做出了合理展望.

参考文献

[1] K. Byrappa;T. Adschiri .Hydrothermal technology for nanotechnology[J].Progress in Crystal Growth and Characterization of Materials,2007(2):117-166.
[2] Aymonier C;Loppinet-Serani A;Reveron H;Garrabos Y;Cansell F .Review of supercritical fluids in inorganic materials science[J].The Journal of Supercritical Fluids,2006(2):242-251.
[3] E.Reverchon;R.Adami .Nanomaterials and supercritical fluids[J].The Journal of Supercritical Fluids,2006(1):1-22.
[4] Brunner G .Near critical and supercritical water.Part I.Hydrolytic and hydrothermal processes[J].Journal of Supercritical Fluids,2009,47:373.
[5] Shina N C;Lee Y;Shina Y H et al.Synthesis of cobalt nanoparticles in supercritical methanol[J].Materials Chemistry and Physics,2010,124:140.
[6] Noguchi T;Matsui K;Islam N M et al.Rapid synthesis of γ-Al2O3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system[J].Journal of Supercritical Fluids,2008,46:129.
[7] Lu J F;Hakuta Y;Hayashi H et al.Preparation of Ca0.8-Sr0.2Ti1-xFexO3-δ(x=0.1~0.3) nanoparticles using a flow supercritical reaction system[J].Journal of Supercritical Fluids,2008,46:77.
[8] 许群,倪伟.超临界流体技术制备纳米材料的研究与展望[J].化学进展,2007(09):1419-1427.
[9] Skerget M;Knez Z;Knez-Hrncic M .Solubility of solids in sub and supercritical fluids:A review[J].Journal of Chemical and Engineering Data,2011,56:694.
[10] Aimable, A;Xin, B;Millot, N;Aymes, D .Continuous hydrothermal synthesis of nanometric BaZrO3 in supercritical water[J].Journal of Solid State Chemistry,2008(1):183-189.
[11] Ki Chul Park;Feng Wang;Shingo Morimoto;Masatsugu Fujishige;Akimitsu Morisako;Xiaoxi Liu;Yong Jung Kim;Yong Chae Jung;In Young Jang;Morinobu Endo .One-pot synthesis of iron oxide-carbon core-shell particles in supercritical water[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2009(7):1443-1450.
[12] A.Aimable;H.Muhr;C.Gentric .Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water:Towards a better control of the process[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2009(1/2):99-106.
[13] Hayashi H;Hakuta Y .Hydrothermal synthesis of metal oxide nanoparticles in supercritical water[J].Materials,2010,3:3794.
[14] Cansell F;Aymonier C .Design of functional nanostructured materials using supercritical fluids[J].Journal of Supercritical Fluids,2009,47:508.
[15] Lester E;Blood P;Denyer J et al.Reaction engineering:The supercritical water hydrothermal synthesis of nano-particles[J].Journal of Supercritical Fluids,2006,37:209.
[16] Hakuta Y;Hayashi H;Arai K .Fine particle formation using supercritical fluids[J].Current Opinion in Solid State and Materials Science,2003,7(4-5):341.
[17] Hayashi H;Noguchi T;Hakuta Y et al.Hydrothermal synthesis of BaTiO3 nanoparticles using a supercritical continuous flow reaction system[J].Journal of Crystal Growth,2010,312:1968.
[18] Kawasaki S;Xiuyi Y;Sue K et al.Continuous supercritical hydrothermal synthesis of controlled size and highly crystalline anatase TiO2 nanoparticles[J].Journal of Supercritical Fluids,2009,50:276.
[19] Nugroho A;Kim S J;Chung K Y et al.Synthesis of Li4 Ti5O12 in supercritical water for Li-ion batteries:Reaction mechanism and high-rate performance[J].Electrochimica Acta,2012,78(01):623.
[20] Mi J L;Jensen T N;Hald P et al.Glucose-assisted continuous flow synthesis of Bi2Te3 nanoparticles in supercritical/near-critical water[J].Journal of Supercritical Fluids,2012,67:84.
[21] Yeo S;Kiran E .Formation of polymer particles with supercritical fluids:A review[J].Journal of Supercritical Fluids,2005,34:287.
[22] Shah P S;Hanrath T;Johnston K P et al.Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids[J].Journal of Physical Chemistry B,2004,108:9574.
[23] McLeod M C;McHenry R S;Beckman E J et al.Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems[J].Journal of Physical Chemistry B,2003,107(12):2693.
[24] Ohde H;Hunt F;Wai C M .Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion[J].Chemistry of Materials,2001,13:4130.
[25] Hiroyuki Ohde;Mariko Ohde;Franklin Bailey;Hakwon Kim;Chien M. Wai .Water-in-CO_2 Microemulsions as Nanoreactors for Synthesizing CdS and ZnS Nanoparticles in Supercritical CO_2[J].Nano letters,2002(7):721-724.
[26] Vostrikov A A;Fedyaeva O N;Shishkin A V et al.ZnO nanoparticles formation by reactions of bulk Zn with H2Oand CO2 at sub-and supercritical conditions:Ⅱ.Morphology and properties of nanoparticles[J].Journal of Supercritical Fluids,2009,48:161.
[27] Devaraju, MK;Yin, S;Sato, T .A Fast and Template Free Synthesis of Tb:Y2O3 Hollow Microspheres Via Supercritical Solvothermal Method[J].Crystal growth & design,2009(6):2944-2949.
[28] Devaraju M K;Yin S;Sato T .Morphology control of cerium oxide particles synthesized via a supercritical solvothermal method[J].Appl Mater Interf,2009,1:2694.
[29] Devaraju, M.K.;Yin, S.;Sato, T. .Eu3+:Y2O3 microspheres and microcubes: A supercritical synthesis and characterization[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2011(11):4698-4704.
[30] Sahraneshin A;Takami S;Minam K et al.Synthesis and morphology control of surface functionalized nanoscale yttrium aluminum garnet particles via supercritical hydrothermal method[J].Progress in Crystal Growth and Characterization of Materials,2012,58:43.
[31] Tadafumi Adschiri;Yukiya Hakuta;Kunio Arai .Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions[J].Industrial & Engineering Chemistry Research,2000(12):4901-4907.
[32] Gourinchas V;Bocquet J F;Chor K et al.Modeling of a continuous reactor for TiO2 powder synthesis in a supercritical fluid-experimetal validation[J].Journal of Supercritical Fluids,1996,9:222.
[33] Ernesto Reverchon;Giuseppe Caputo;Sebastiano Correra;Pietro Cesti .Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale[J].The Journal of Supercritical Fluids,2003(3):253-261.
[34] Sasaki T;Ohara S;Naka T et al.Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction[J].Journal of Supercritical Fluids,2010,53:92.
[35] Veriansyah B;Susanti R F;Nugroho A et al.Continuous synthesis of high-surface-area aluminum hydroxide methoxide nano-and microparticles in supercritical methanol and their conversion into γ-Al2 O3[J].Materials Letters,2011,65:772.
[36] Mehrnoosh Atashfaraz;Mojtaba Shariaty-Niassar;Satoshi Ohara;Kimitaka Minami;Mitsuo Umetsu;Takashi Naka;Tadafumi Adschiri .Effect of titanium dioxide solubility on the formation of BaTiO3 nanoparticles in supercritical water[J].Fluid Phase Equilibria,2007(2):233-237.
[37] Arita T;Ueda Y;Minami K et al.Dispersion of fatty acid surface modified ceria nanocrystals in various organic solvents[J].Industrial and Engineering Chemistry Research,2010,49:1947.
[38] Seong G;Takami S;Adschiri T et al.Supercritical hydrothermal synthesis of metallic cobalt nanoparticles and its thermodynamic analysis[J].Journal of Supercritical Fluids,2011,60:113.
[39] Li H;Arita T;Takami S et al.Rapid synthesis of tindoped indium oxide microcrystals in supercritical water using hydrazine as reducing agent[J].Progress in Crystal Growth and Characterization of Materials,2011,57:117.
[40] Cabanas A;Li J;Blood P;Chudoba T;Lojkowski W;Poliakoff M;Lester E .Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water-ethanol mixtures[J].The Journal of Supercritical Fluids,2007(2):284-292.
[41] Lester E;Aksomaityte G;Li J et al.Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles[J].Progress in Crystal Growth and Characterization of Materials,2012,58:3.
[42] Lee J;Teja AS .Characteristics of lithium iron phosphate (LiFePO4)particles synthesized in subcritical and supercritical water[J].The Journal of Supercritical Fluids,2005(1):83-90.
[43] Lee J;Teja A S .Synthesis of LiFePO4 micro and nanoparticles in supercritical water[J].Materials Letters,2006,60:2105.
[44] Xu C;Lee J;Teja A S .Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water[J].Journal of Supercritical Fluids,2008,44:92.
[45] N. Millot;B. Xin;C. Pighini .Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions[J].Journal of the European Ceramic Society,2005(12):2013-2016.
[46] Aimable, A.;Aymes, D.;Bernard, F.;Le Cras, F. .Characteristics of LiFePO4 obtained through a one step continuous hydrothermal synthesis process working in supercritical water[J].Solid state ionics,2009(11/13):861-866.
[47] Kim, J.-R.;Myeong, W.-J.;Ihm, S.-K. .Characteristics of CeO_2-ZrO_2 mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as support of Rh catalyst for catalytic reduction of NO by CO[J].Journal of Catalysis,2009(1):123-133.
[48] Kim J R;Lee K Y;Suh M J et al.Ceria-zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support[J].Catalysis Today,2012,185:25.
[49] Jeon J W;Kim J R;Ihm S K .Continuous one-step synthesis of N-doped titania under supercritical and subcritical water conditions for photocatalytic reaction under visible light[J].Journal of Physics and Chemistry of Solids,2010,71:608.
[50] Veriansyah B;Kim J R;Min B K et al.Continuous synthesis of surface-modified zinc oxide nanoparticles in supercritical methanol[J].Journal of Supercritical Fluids,2010,52:76.
[51] Hong S;Kim S J;Kim J R et al.Small capacity decay of lithium iron phosphate (LiFePO4) synthesized continuously in supercritical water:Comparison with solid-state method[J].Journal of Supercritical Fluids,2011,55:1027.
[52] Zheng Q X;Li B;Xue M et al.Synthesis of YVO4 and rare earth-doped YVO4 ultra-fine particles in supercritical water[J].Journal of Supercritical Fluids,2008,46:123.
[53] Zhao D;Han E;Wu X et al.Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water[J].Materials Letters,2006,60:3544.
[54] Zhao D;Wu X;Guan H et al.Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles[J].Journal of Supercritical Fluids,2007,42:226.
[55] Wang L;Zhuang J;Peng Q et al.A general strategy for nanocrystal synthesis[J].Nature,2005,437:121.
[56] Hermann Weingartner;Ernst Ulrich Franck .Supercritical Water as a Solvent[J].Angewandte Chemie,2005(18):2672-2692.
[57] Zhang J;Ohara S;Umetsu M et al.Colloidal ceria nanocrystals:A tailor-made crystal morphology in supercritical water[J].Advanced Materials,2007,19:203.
[58] Zhang Y;Erkey C .Preparation of supported metallic nanoparticles using supercritical fluids: A review[J].The Journal of Supercritical Fluids,2006(2):252-267.
[59] Kaneko K;Inoke K;Freitag B;Hungria AB;Midgley PA;Hansen TW;Zhang J;Ohara S;Adschiri T .Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis[J].Nano letters,2007(2):421-425.
[60] Jessop P G;Ikariya T;Noyori R .Homogeneous catalysis in supercritical fluids[J].Chemical Reviews,1999,99:475.
[61] Alfons B .Homogeneous catalysis in supercritical fluids[J].Chemical Reviews,1999,99:453.
[62] Jessop PG .Homogeneous catalysis using supercritical fluids: Recent trends and systems studied[J].The Journal of Supercritical Fluids,2006(2):211-231.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%