欢迎登录材料期刊网

材料期刊网

高级检索

The direct observations of the atomic arrangements in both conventional furnace annealed and electric pulse rapid annealed Fe78B13Si9 amorphous alloy have been conducted by the lattice imaging technique in a higt resolution electron microscope. The results showed that the embrittlement of the alloy was related to the extent of atomic rearrangements during the annealing processes. The embrittlement of the alloy after 1hour conventional furnace annealing at about 270℃ is caused by the sufficient atomic rearrangements which are characterized by the growth of some bct Fe3B-like atomic short range ordering regions already existed in the as-quenched structure. Electric pulse rapid annealing can effectively retard the above-mentioned atomic rearrangements and thus restrain the embrittlement. The embrittlement only occurs when certain amount of bcc α-Fe nanocrystals are precipitated in the amorphous matrix during electric pulse rapid annealing.

参考文献

[1]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%