欢迎登录材料期刊网

材料期刊网

高级检索

为了提高Si3N4产率和降低成本,采用硅粉、氮气作为原料,碳、二氧化硅作为稀释剂,卤化铵作为化学激励剂,通过机械活化和化学激励法燃烧合成制备Si3N4和SiC复相原料。热力学分析表明:特定的工艺条件下氧化硅和碳替代氮化硅作为稀释剂,当氧化硅和碳含量约30wt%时,能得到氮化硅和碳化硅复合陶瓷粉体。以碳的活度为1计(ac=1),燃烧合成时两者稳定共存的温度为1647K;同时,增大氮气压力和降低氧分压是硅粉完全氮化的条件,而不宜提高合成温度。当满足特定工艺条件时(原料加入量为9%Si3N4及15%淀粉和SiO2的混合物、氮气压力大于3MPa、5小时磨研),燃烧合成产物的主晶相为Si3N4、SiC和Si2N2O,而无游离硅,此产物是烧结Si3N4和SiC复合陶瓷或制备Si3N4结合SiC耐高温材料的理想原料。

In order to enhance productivity and reduce cost,Si3N4 and SiC composite powder was synthesized by combustion after mechanical activation and chemical incensitive.Silicon powder and nitrogen gas were used as raw materials,carbon and silicon dioxide as diluent,and ammonium halide as chemical incentive agent.Thermodynamic analysis shows that silicon oxide and carbon as diluents to replace silicon nitride needs specific process conditions.Only when silica and carbon content are about 30 wt%,silicon nitride and silicon carbide composite powder can form.Assuming the carbon activity is 1(ac=1),the equilibrium temperature for the coexistence of Si3N4 and SiC in the combustion synthesis system is 1647K.At the same time,the complete nitrogenation of silicon powder needs high nitrogen partial pressure and low oxygen partial pressure,but not high temperature.When the necessary and appropriate process condition(9% Si3N4 and 15% mixture of starch and SiO2 content,more than 3MPa nitrogen pressure,5 hours milling) is met,the combustion synthesis product is free of silicon,but mainly composed of Si3N4,SiC and Si2N2O crystal phases,,which is an ideal composition as the raw materials of Si3N4-SiC dual phase ceramics and Si3N4 bonded SiC refractory.

参考文献

[1] Riley F.L.;, .Silicon Nitride and Related Materials[J].Journal of the American Ceramic Society,2000(2):245-265.
[2] A.Rosenflanz.Kinetics of Phase Transformation in Sialon Ceramics:II.Reaction Paths[J].Journal of the European Ceramic Society,1999(19):2337-2348.
[3] National Research Council.Materials Research to Meet 21st Century Defense Needs[M].National Academies Press,Washington D C,2003
[4] R.Ra J .Fundamental Research in Structure Ceramics for Service Near 2000℃[J].Journal of the American Ceramic Society,1993,76(09):2147-2174.
[5] N.S.Jacobson .Corrosion of Silicon-based Ceramics in Combustion Environment[J].Journal of the American Ceramic Society,1993,76(01):3-28.
[6] A.G.Evans .Perspective on the Development of High- Toughness Ceramics[J].Journal of the American Ceramic Society,1990,73(02):187-206.
[7] 曹永革 .燃烧合成氮化硅基陶瓷的研究[D].北京科技大学,1998.
[8] 殷声.燃烧合成进展[M].北京:冶金工业出版社,1999
[9] K.A.Golubjatnikov et al.The Economics of Advanced Self- propagating High-temperature Synthesis Materials Fabrication[J].American Ceramic Society Bulletin,1993,72(12):96-102.
[10] Suren L. Kharatyan;Hayk H. Nersisyan .Chemically Activated SHS in Synthesis of Refractory Carbide Powders[J].Key engineering materials,2002(217):83-92.
[11] C.C.Chen.A Cost Effective Process for Large-scale Production of Submieron SiC by Combustion Synthesis[J].Materials Chemistry and Physics,2002(73):198-205.
[12] J.H.Peng et al.Microwave Initiated Self-propagating High- temperture Synthesis of SiC[J].Journal of Materials Synthesis and Processing,2001,9(06):363-368.
[13] J.Weiss et al.Calculation of Heterogeneous Phase Equilibria in Oxide-Nitride Systems[J].CALPHAD-Computer Coupling of Phase Diagrams and Thermochemistry,1981,5(02):125-140.
[14] M.Hillert et al.Thermodynamic Calculation of the Si-N-O System[J].Zeitschrift fur Metallkunde,1992,83(09):648-654.
[15] D.Kata et al.Combustion Synthesis of Multiphase Powders in Si-C-N system[J].Solid State Ionics,1997,101-103(Part 1):65-70.
[16] M.Maalmi et al.Reaction-bonded Silicon Nitride Synthesis:Experimental and Model[J].Chemistry and Engineering Science,1998,53(04):679-689.
[17] B.W.Sheldon et al.Formation of Reaction-Bonded Silicon Nitride from Silane-Derived Silicon Powder:Macroscopic Kinetics and Related Transport Phenomena[J].Journal of the American Ceramic Society,1992,75(03):677-685.
[18] H.Wada et al.Stability of Phase in the Si-C-N-O System[J].Journal of the American Ceramic Society,1988,71(10):837-840.
[19] 陈松林,杨筠,林志明,李江涛,赵海雷,孙加林.控温活化燃烧合成α-Si3N4的动力学研究[J].无机材料学报,2004(06):1345-1352.
[20] H.Chen et al.Fabrication of β-Si3N4 Nano-fibers[J].Journalof Alloy and Compounds,2001,1-2(325):11-13.
[21] Y.G. Cao;H. Chen;J.T. Li .Priority communication: Formation of α-Si_3N_4 whiskers with addition of NaN_3 as catalyst[J].Journal of Crystal Growth,2002(1):9-11.
[22] J.R.Zeng et al.Combustion Synthesis of Si3N4-SiC Composite Powders[J].Journal of the American Ceramic Society,1991,74(09):2197-2200.
[23] P.F.Becher et al.Toughening Behavior in SiC- whisker-reinforced Aluminum[J].Journal of the American Ceramic Society,1984,67(12):267-269.
[24] Shaw LL.;Ren RM.;Yang ZG. .Synthesis of nanostructured Si3N4/SiC composite powders through high energy reaction milling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1):113-126.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%