{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文建立镜反射不透明表面下,非均匀光学物性纯吸收性介质内的红外辐射传输模型.红外辐射在折射率连续变化的介质内沿曲线传输.将非均匀介质沿厚度方向离散成n个物性均匀的等温微层,每个微层内辐射沿直线传播,光滑曲线传输路径即离散成首尾相连的折线系列.采用多层辐射传输模型,利用射线踪迹法建立非均匀介质内的红外辐射传输模型.在多层模型中,相邻两微层间的界面引入折射/全反射判据,避免了界面处的积分奇异现象和原本不存在的界面反射现象.","authors":[{"authorName":"易红亮","id":"117b1148-76df-4322-a213-fb6358a68183","originalAuthorName":"易红亮"},{"authorName":"罗剑峰","id":"6d2e2635-05df-435b-a9c1-21bee23102b2","originalAuthorName":"罗剑峰"},{"authorName":"贺志宏","id":"0d4270d1-4091-4292-9be4-14e0816b2346","originalAuthorName":"贺志宏"},{"authorName":"甄仌","id":"8920df20-6334-41f7-95f3-576cfc7db1e1","originalAuthorName":"甄仌"},{"authorName":"谈和平","id":"8cf435f5-86ea-46d4-b5a9-0a04e23f75db","originalAuthorName":"谈和平"}],"doi":"","fpage":"645","id":"9945b5eb-734a-4416-b2f7-dfeaceebc08d","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"134ae7b9-774d-467f-83d3-12d39c3120a9","keyword":"非均匀介质","originalKeyword":"非均匀介质"},{"id":"c626103a-8c1a-4fcb-932f-59d9f9ff0cf9","keyword":"多层模型","originalKeyword":"多层模型"},{"id":"c0582717-4954-4b47-a529-58ae821fd1ac","keyword":"射线踪迹法","originalKeyword":"射线踪迹法"},{"id":"507fb005-46db-4dfb-a26b-ba80f4078c68","keyword":"辐射传递系数","originalKeyword":"辐射传递系数"}],"language":"zh","publisherId":"gcrwlxb200904028","title":"非均匀介质红外辐射传输模型","volume":"30","year":"2009"},{"abstractinfo":"本文中DRESOR法(Distributions of Ratios of Energy Scattered Or Reflected)应用于求解一维非均匀介质内的瞬态辐射传输问题.结果表明,反射热流的双峰分布现象能够体现介质内部的非均匀分布特征,并且能够通过分析其特点推断非均匀介质的中间界面位置.通过DRSESOR法计算得到的高方向分辨率的辐射强度体现了其在决定非均匀介质表面位置的独特优势.最后,对双峰分布现象的存在条件进行了探讨.","authors":[{"authorName":"黄志锋","id":"e88c2e7d-2cd1-4976-a259-694c3c905174","originalAuthorName":"黄志锋"},{"authorName":"程强","id":"3427471e-b382-448a-959e-011211d62c3b","originalAuthorName":"程强"},{"authorName":"周怀春","id":"0b2835d7-f1b4-47ec-b928-ae46b97d5c80","originalAuthorName":"周怀春"},{"authorName":"许培锋","id":"523878f4-8e11-40ef-b8e7-dc0e8211202f","originalAuthorName":"许培锋"}],"doi":"","fpage":"1005","id":"940468cd-88c2-4326-96eb-68a327652d30","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"bf5ba372-87d4-407d-bbc9-235bcdd7c5b5","keyword":"DRESOR法","originalKeyword":"DRESOR法"},{"id":"6744fe1d-6c7b-455f-8595-d68c9bd05c92","keyword":"瞬态辐射","originalKeyword":"瞬态辐射"},{"id":"62a1300e-e807-4dfc-a91b-1999f5c406fc","keyword":"超短脉冲","originalKeyword":"超短脉冲"},{"id":"a59611a6-cd4f-4f80-ae17-3611d4b87bc9","keyword":"非均匀介质","originalKeyword":"非均匀介质"}],"language":"zh","publisherId":"gcrwlxb200806027","title":"DRESOR法求解超短脉冲在一维非均匀介质中的瞬态辐射传输","volume":"29","year":"2008"},{"abstractinfo":"推导了扩散近似方程,通过半无限大均匀介质计算,用扩散理论分析解验证了数值方法的有效性.模拟了光在非均匀介质内的传输过程,给出了介质内光通量随时间变化的空间分布.结果表明,该基于扩散模型的数值方法能够模拟短脉冲光在强散射介质中的传播过程以及漫散射光的时间变化特性,并且借助于光通量空间分布能够准确模拟非均匀介质内内含物的位置.","authors":[{"authorName":"王圣刚","id":"45f76b23-0656-418c-831f-ce3c084c97a3","originalAuthorName":"王圣刚"},{"authorName":"阮立明","id":"883a6401-40fb-4661-b3de-30efb2f16a49","originalAuthorName":"阮立明"},{"authorName":"齐宏","id":"c651f3a0-1e77-4e4c-ac72-3e9c8146c0b6","originalAuthorName":"齐宏"},{"authorName":"张彪","id":"e8d05917-20cf-439a-b0ce-88ee52d1e8c1","originalAuthorName":"张彪"},{"authorName":"李炳熙","id":"7acad933-36e1-4b43-94f6-ea052190ea32","originalAuthorName":"李炳熙"}],"doi":"","fpage":"1531","id":"bc800e70-4a0c-4741-bb37-342cd82d248e","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"abfd5c0b-917e-43ef-839c-2b9f3178414c","keyword":"扩散近似方程","originalKeyword":"扩散近似方程"},{"id":"6363a965-41ee-4d43-8de3-3a2a5ffb728e","keyword":"非均匀介质","originalKeyword":"非均匀介质"},{"id":"fc9b2079-e903-4b2e-bf63-91422f6cee6e","keyword":"光通量","originalKeyword":"光通量"}],"language":"zh","publisherId":"gcrwlxb200909026","title":"短脉冲激光与介质相互作用的扩散模型","volume":"30","year":"2009"},{"abstractinfo":"本文采用控制容积法,界面调和平均导热系数值以及图形处理方法对典型非均匀多孔介质硬质聚氨酯泡沫材料的导热过程进行了分析与模拟计算.结果表明:多孔介质的内部结构是影响温度分布和热量传递的主要的因素,其影响程度与骨架和孔隙的导热系数,孔隙的大小和分布有关;计算得到的有效热导率值与文献中实验测量结果吻合较好.本文的研究结果可以推广到更为复杂的非均匀多孔介质的场合,从而可以进一步认识非均匀多孔介质中的导热规律,为工程计算提供更精确的计算方法.","authors":[{"authorName":"李小川","id":"9450361c-c389-4e45-a7cc-cc6c6d5ca7f6","originalAuthorName":"李小川"},{"authorName":"施明恒","id":"ed03348b-322f-4c8e-845c-362b0492a063","originalAuthorName":"施明恒"},{"authorName":"张东辉","id":"c7d341fe-07c0-4ac1-9cbe-003de75f8fef","originalAuthorName":"张东辉"}],"doi":"","fpage":"644","id":"6b36cc07-27b7-4daa-a00d-0e0e0c5aac1f","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2ab320da-9c3f-4c10-a5bc-8ad09195ace5","keyword":"硬质聚氨酯泡沫","originalKeyword":"硬质聚氨酯泡沫"},{"id":"97ba495d-2d2e-4e5f-ac86-bbe73b772c18","keyword":"非均匀多孔介质","originalKeyword":"非均匀多孔介质"},{"id":"14976a03-1d53-41b7-a2cd-9b6b0cfabab1","keyword":"温度分布","originalKeyword":"温度分布"},{"id":"c2896cfb-79a4-4fbd-b91d-7f57a60d5b2d","keyword":"有效热导率","originalKeyword":"有效热导率"}],"language":"zh","publisherId":"gcrwlxb200604033","title":"非均匀多孔介质有效热导率分析","volume":"27","year":"2006"},{"abstractinfo":"对任意非均匀介质波导通过分层转化为多层波导,再利用分析转移矩阵方法(ATMM)考虑层间子波相移的贡献,定义了包含主波和子波的总波数,得到了光在非均匀平板介质波导结构中传输的反射系数和透射系数表达式.从推导过程和解析式表明:推导过程没有引入任何近似,得到的结论是可靠精确的;解析式本身非常简明且物理意义清晰;所得到的解析式既适合于折射率均匀的分层结构又适合于折射率非均匀变化的各种复杂结构.预计在薄膜加工工艺中具有非常广泛的应用前景.","authors":[{"authorName":"吴朗","id":"76aa6874-2433-4672-b7d8-b8c269de81a8","originalAuthorName":"吴朗"}],"doi":"10.3969/j.issn.1007-5461.2009.06.019","fpage":"750","id":"07272e2b-dcdb-4ec9-86eb-ceff0abc9103","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"0235e270-8e3e-4d3e-9b0f-fe4d5ee68b86","keyword":"波导光学","originalKeyword":"波导光学"},{"id":"957c563d-8282-44ee-a359-7a708324f4e7","keyword":"分析转移矩阵方法","originalKeyword":"分析转移矩阵方法"},{"id":"4075ffca-4f44-4ba5-a900-62f934d65209","keyword":"WKB法","originalKeyword":"WKB法"},{"id":"68ff87b5-9671-44fa-8e6e-a9ee5d8235ad","keyword":"反射","originalKeyword":"反射"},{"id":"ea8b73eb-b78a-49b9-b55d-af9e7c99d3ea","keyword":"透射","originalKeyword":"透射"}],"language":"zh","publisherId":"lzdzxb200906019","title":"光在非均匀介质中反射和透射系数的精确解析","volume":"26","year":"2009"},{"abstractinfo":"随着超短脉冲激光的快速发展,吸收散射性介质内的瞬态辐射传输引起了广泛的关注.本文采用最小二乘有限元法模拟了超短脉冲激光局部入射条件下,具有高散射核的二维非均匀介质内的瞬态辐射传输.研究了不同边界位置上反射和透射信号随时间的变化情况.结果表明,对于具有高散射核的非均匀介质,能够揭示散射核位置的双峰现象可能在早期的反射信号中发生,早期的反射信号比后期的、经过介质衰减后信号更重要.因此,在利用短脉冲激光进行光谱分析和成像等技术中,人们应该重视早期反射信号的测量.","authors":[{"authorName":"阮立明","id":"9d4f0493-00b0-4790-bb26-44ad3a44937d","originalAuthorName":"阮立明"},{"authorName":"安巍","id":"04a91983-2f2c-4183-836c-47b781abd790","originalAuthorName":"安巍"},{"authorName":"谈和平","id":"0db89cb8-9b56-43af-ad2f-2102f278abf5","originalAuthorName":"谈和平"}],"doi":"","fpage":"998","id":"8e1bb563-8e68-4d6c-b16a-c33e1764c57e","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f9ce1c98-7210-44a6-8255-1ba2fab72df6","keyword":"瞬态辐射传输","originalKeyword":"瞬态辐射传输"},{"id":"cb2548a2-192a-4ae5-a5ee-95bb2961159d","keyword":"有限元","originalKeyword":"有限元"},{"id":"b997ee46-2a52-4da5-bb29-c11e5dc2114e","keyword":"超短脉冲激光","originalKeyword":"超短脉冲激光"}],"language":"zh","publisherId":"gcrwlxb200706031","title":"超短脉冲激光在二维非均匀介质内的瞬态辐射传输","volume":"28","year":"2007"},{"abstractinfo":"在辐射换热网络法基础上,定义了容积散射热阻并导出其表达式,区别容积辐射体对不同表面段的发射率及逸散系数,分析了均匀散射介质参与辐射换热时空间热阻的变化,并绘制出散射介质参与的三元体系辐射换热网络图.介质的散射使得容积段与表面段之间的总热阻增大,因而削弱了容积段与表面段之间的辐射热交换.","authors":[{"authorName":"马金凤","id":"65827583-f377-4ed0-8778-6ecc21dbfd36","originalAuthorName":"马金凤"},{"authorName":"陈海耿","id":"bbbfeb98-3b63-442a-b2ff-58877311fd3d","originalAuthorName":"陈海耿"},{"authorName":"李国军","id":"c8f92cd1-d760-49c0-b06a-919b89a8413e","originalAuthorName":"李国军"},{"authorName":"吴彬","id":"14c52c15-350c-46be-a51c-e2ff15820aff","originalAuthorName":"吴彬"}],"doi":"10.3969/j.issn.1671-6620.2007.04.012","fpage":"293","id":"6c9bbecc-d8fe-44aa-b823-1727c7b2980b","issue":"4","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"311586eb-5b17-4980-b079-ca7177a87726","keyword":"辐射换热","originalKeyword":"辐射换热"},{"id":"50078a28-25a1-49cf-88c5-aaebf0f05a54","keyword":"容积散射热阻","originalKeyword":"容积散射热阻"},{"id":"d3ed68b9-0797-4626-b6b8-c186317a2f9f","keyword":"发射率","originalKeyword":"发射率"}],"language":"zh","publisherId":"clyyjxb200704012","title":"均匀散射介质参与体系辐射换热分析","volume":"6","year":"2007"},{"abstractinfo":"讨论两种散射,导出相应的分布函数,运用蒙特卡罗法模拟光子在无序介质中的随机行走过程,得到非相干背散射空间分布及反射率.计算结果表明:散射不同,非相干背散射空间分布和反射率不同,非相干背散射反射率随光入射角增大而增大;非相干背散射反射率随无序介质吸收系数增大而减小,通过测量非相干背散射反射率可得吸收系数,进一步可得每次散射光子被微粒吸收的概率;非相干背散射反射率随光子平均自由程增大而减小,通过测量非相干背散射反射率可得平均自由程,这比检测相干背散射来得到平均自由程要容易.最后,讨论了背散射对无序激光器的影响.","authors":[{"authorName":"付方正","id":"7380d788-8cfe-48fa-a21c-e9a9610ed2fb","originalAuthorName":"付方正"},{"authorName":"李明","id":"0f939b1c-135a-4c90-8055-482fc0a2be66","originalAuthorName":"李明"}],"doi":"10.3969/j.issn.1007-5461.2010.06.010","fpage":"693","id":"40956a28-ae63-450a-91d0-51193b327a8f","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"1e26675a-d454-42d3-b03d-feca1b8a9776","keyword":"激光物理","originalKeyword":"激光物理"},{"id":"69e91dd8-7d88-4cd3-afce-b7c95b0a88e0","keyword":"非相干背散射","originalKeyword":"非相干背散射"},{"id":"63ab3b73-3c1b-4d07-8cfe-f8bb7d78ca09","keyword":"蒙特卡罗法","originalKeyword":"蒙特卡罗法"},{"id":"47310d45-7dc8-4371-a29a-fe251851cfe7","keyword":"无序介质","originalKeyword":"无序介质"}],"language":"zh","publisherId":"lzdzxb201006010","title":"无序介质的非相干背散射","volume":"27","year":"2010"},{"abstractinfo":"研究了外加电压幅值对均匀介质阻挡放电(DBD)特性的影响,并结合不同外加电压幅值下的发光图像,分析了DBD放电特性的变化情况.利用测量得到的李萨育图形计算得到放电功率P和传输电荷Q,并进一步研究了外加电压幅值和电源频率对P和Q的影响.研究结果表明,采用硅油作为液体阻挡介质的锥-平板电极结构DBD能够在大气压空气中产生均匀放电,P和Q随外加电压幅值和电源频率的增加而非线性增加.","authors":[{"authorName":"仇展","id":"963bb1ba-f828-4ba7-9bef-6ef1a57128cc","originalAuthorName":"仇展"},{"authorName":"方志","id":"bd6f82c4-bcb5-4fc8-a290-f6f3111cf9f9","originalAuthorName":"方志"},{"authorName":"赵龙章","id":"7f9bfa67-3f8e-4d67-993a-dc27f03c2ad4","originalAuthorName":"赵龙章"}],"doi":"10.3969/j.issn.1009-9239.2009.04.015","fpage":"64","id":"184dd462-f6d4-4f9e-9827-87bda9b2485f","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"0bc14da3-e8c6-4e7b-9808-4b0b13004b2c","keyword":"介质阻挡放电","originalKeyword":"介质阻挡放电"},{"id":"8f35410f-6b97-4196-871d-ee75b3503f17","keyword":"放电功率","originalKeyword":"放电功率"},{"id":"9f51d8b3-57c7-4d52-a50a-48a93f7ca54e","keyword":"传输电荷","originalKeyword":"传输电荷"},{"id":"0595925c-4dc6-4821-9f04-8b41af55060e","keyword":"锥电极","originalKeyword":"锥电极"},{"id":"2e68b088-2ff9-418e-8dee-18375de86298","keyword":"甲基硅油","originalKeyword":"甲基硅油"}],"language":"zh","publisherId":"jycltx200904015","title":"利用液体阻挡介质产生空气中均匀介质阻挡放电的研究","volume":"42","year":"2009"},{"abstractinfo":"用中等气压空气中均匀介质阻挡放电(DBD)产生的低温等离子体对聚丙烯(PP)薄膜进行表面改性.通过接触角和表面能测量、扫描电子显微镜(SEM)和全反射傅里叶红外光谱(ATR-FTIR)等方法,研究了等离子体改性时间和功率密度对PP薄膜表面水接触角、表面能、表面粗糙度以及表面化学成分等的影响.结果表明:PP表面水接触角和表面能先是随处理时间增加分别下降和增加,然后达到饱和状态;当处理时间一定时,功率密度越大,接触角下降的越多,表面能上升的越多;增大DBD处理的功率密度,利用更少的处理时间就能得到同样的处理效果.表面样貌及化学成分分析表明,随功率密度的增大,处理后薄膜表面的粗糙度增加,表面引入的含氧基团增多.","authors":[{"authorName":"杨浩","id":"5ae32ecc-a6b7-4792-ac33-b1ca84b7f0ee","originalAuthorName":"杨浩"},{"authorName":"方志","id":"63f1af31-69da-4133-b651-a580bc4e0fed","originalAuthorName":"方志"},{"authorName":"解向前","id":"d649d1cd-acf6-49e4-ba16-0bfc3a1b6a4b","originalAuthorName":"解向前"},{"authorName":"戴超","id":"bbe7f9f9-d8d0-4e47-a6be-30d6ec7754e3","originalAuthorName":"戴超"}],"doi":"10.3969/j.issn.1009-9239.2010.02.015","fpage":"57","id":"0f6b353a-b284-4c29-b49c-6c94c5d913c5","issue":"2","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"dcf3db3d-e5a6-4c66-b5c6-4f49f39267df","keyword":"介质阻挡放电","originalKeyword":"介质阻挡放电"},{"id":"3702abea-836e-4079-864d-ec7d03d57627","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"662ab702-d2e9-4adf-acd3-88e3c57e213d","keyword":"功率密度","originalKeyword":"功率密度"},{"id":"a0f20ad5-3920-4b0a-8b0a-10a65693cd9f","keyword":"亲水性","originalKeyword":"亲水性"},{"id":"64059dee-d0b5-4a64-a95d-5b669e420a8f","keyword":"聚丙烯薄膜","originalKeyword":"聚丙烯薄膜"}],"language":"zh","publisherId":"jycltx201002015","title":"均匀介质阻挡放电改性聚丙烯薄膜的研究","volume":"43","year":"2010"}],"totalpage":3387,"totalrecord":33869}