研究了温度为150℃,电流密度为5.0×103A/cm2的条件下电迁移对Ni/Sn/Ni-P(Au)线性接头中界面反应的影响.结果表明电流方向对Ni-P层的消耗起着决定作用.当Ni-P层为阴极时,电迁移加速了Ni-P层的消耗,即随着电迁移时间的延长,Ni-P层的消耗显著增加;电迁移100 h后Ni-P层消耗了5.88 μm,电迁移200 h后Ni-P层消耗了13.46μm.在Sn/Ni-P的界面上形成了一层Ni2SnP化合物而没有观察到Ni3Sn4化合物的存在,多孔状的Ni3P层位于Ni2SnP化合物与Ni-P层之间.当Ni-P层为阳极时,在电迁移过程中并没有发现Ni-P层的明显消耗,在Sn/Ni-P的界面处生成层状的Ni3Sn4化合物,其厚度随着电迁移时间的延长而缓慢增加,电迁移200 h后Ni3Sn4层的厚度达到1.81 μm.
参考文献
[1] | Zeng K.;Tu KN. .Six cases of reliability study of Pb-free solder joints in electronic packaging technology [Review][J].Materials Science & Engineering, R. Reports: A Review Journal,2002(2):55-105. |
[2] | Blect J A;Meieran E S .[J].Journal of Applied Physics,1969,40(02):485. |
[3] | 刘曦,高加强,胡文彬.化学镀Ni-P合金在电子工业中的应用[J].电镀与精饰,2006(01):30-34,52. |
[4] | Jang J W;Kin P G;Tu K N et al.[J].Journal of Applied Physics,1999,85(12):8456. |
[5] | Alam M O;Chan Y C .[J].IEEE Transactions on Components Packaging and Manufacturing Technology,2008,31(02):431. |
[6] | Huang M L;Loerher T;Manessis D et al.[J].Journal of Electronic Materials,2006,35(01):181. |
[7] | Chen L D;Huang M L;Zhou S M .[J].Journal of Alloys and Compounds,2010,504(02):535. |
[8] | 何洪文,徐广臣,郭福.Cu/Sn-58Bi/Cu焊点在电迁移过程中晶须和小丘的生长[J].金属学报,2009(06):744-748. |
[9] | Lin H J;Lin J S;Chuang T H .[J].Journal of Alloys and Compounds,2009,487(1-2):458. |
[10] | Chen L D;Huang M L;Zhou S M.[A].Las Vegas:ECTC,2010:176. |
[11] | Kim S W;Yoon J W;Jung S B .[J].Journal of Electronic Materials,2004,33(10):1182. |
[12] | Islam M N;Chan Y C;Alam M O et al.[J].Electron Packag,2005,127(04):365. |
[13] | Lu C T;Tseng H W;Chang C H et al.[J].Applied Physics Letters,2010,96(23):232103. |
[14] | Ho P S;Kwok T .[J].Reports on Progress in Physics,1989,52(03):301. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%