欢迎登录材料期刊网

材料期刊网

高级检索

纳米TiO2上负载纳米Pt以制备纳米Pt/TiO2。半导体光催化剂,壳聚糖(CS)经纳米Pt/TiO2改性后作为阴膜层材料,以羧甲基纤维素(CMC)作为阳膜层材料,分别用戊二醛与FeCl。对阴、阳膜层进行交联改性,制备了CMC-Pt/TiO2-CS双极膜,并将该复合膜作为降解高浓度含酚废水电解槽的隔膜。结果表明:Pt/TiO2光催化剂可促进双极膜中间层水的解离,大大降低双极膜的膜阻抗和电阻电压降(IR降);同时,Pt/TiO2光催化剂表面生成的羟基自由基(·OH)可直接作用于苯酚,使其彻底降解成无机小分子;紫外光照下在16.7mA·cm^-2的电流密度下电解高浓度含酚废水80min后,cMc-Pt/TiO2-CS双极膜的苯酚降解率比CMC-TiO2-CS双极膜的苯酚降解率高12.7%;整个电解过程CMC-Pt/TiO2-CS双极膜的膜电阻电压降保持在0.9V。

Chitosan: (CS) was modified with nano-Pt/TiO2 semiconductor photocatalyst (CS - Pt/TiO2 ) which was prepared by doping Pt on TiO2 in advance. CMC - Pt/TiO2 - CS bipolar membrane was then prepared using carboxymethyl cellulose (CMC) and CS - Pt/TiO2 which were cross - linked by FeC13 and glutaraldehyde, respectively. Sandwich-typed CMC- Pt/TiO2 -CS bipolar membrane, the composite membrane with fine protons and hydroxyl ion-permeability, was then applied as the septum of the electrolytic cell in the degradation of phenol. Nano-Pt/TiO2 semiconductor photocatalyst can not only generate hydroxyl radicals ( · OH) which can directly degrade phenol into the small inorganic molecules, but also promote water splitting at the intermediate layer of CMC-Pt/TiO2 -CS bipolar membrane and greatly reduce the impedance and resistance(IR) of bipolar membrane. Compared CMC - Pt/TiO2 - CS bipolar membrane with CMC - TiO2 - CS bipolar membrane under UV irradiation, the degradation rate of the former is 12.7%higher than that of the latter after 80 min electrolysis at the current density of 16.7 mA · cm^- 2, while IR drop of CMC- Pt/TiO2 - CS is as low as 0.9 V.

参考文献

[1] Male S, Ramirez P, Alcaraz A, et al. Handbook on bipolar membrane technology [M]. Enschede: Twente University Press, 2000.
[2] 徐铜文,汪志武,刘宁.双极膜的理论及应用展望[J].水处理技术,1998,24(1);20-25.
[3] Hanada F, Hirayama K, Ohmura N, et al. Bipolar membrane and method for its production: US Patent, 5221455 [P]. 1993 -06-22.
[4] Fu R Q, Xu T W, Wang G, et al. PEG catalytic water splitting in the interface of a bipolar membrane [J]. J Colloid Interface Sci, 2003, 263(2): 386-390.
[5] Fu R Q, Xu T W, Yang W H, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part Ⅱ --Effect of bovine serum albumin (BSA) on water dissociation at the interface of a bipolar membrane [J]. J Colloid Interface Sei, 2004, 278(2): 318-324.
[6] Fu R Q, Xu T W, Cheng Y Y, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part Ⅲ--Effect of starburst dendrimer PAMAM on water dissociation at the interface of a bipolar membrane [J]. J Membr Sci, 2004, 240 (1/2) : 141-147.
[7] Fu R Q, Xue Y H, Xu T W, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part IV--Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane [J].J Colloid Interface Sci, 2005, 285(1): 281-287.
[8] Hosono T, Tanioka A. Effect of polymer composition in intermediate layer on water splitting in bipolar membranes [J].Polymer, 1998, 39(18): 4199-4204.
[9] 莫剑雄.双极膜工作电压的理论分析[J].水处理技术,1998,24(4):187-194.
[10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, Z38: 37-38.
[11] Chen A C, Hindle P H. Platinum- based nanostructured materials: Synthesis, properties, and applications [J]. Chem Rev, 2010, 110(6): 3767-3804.
[12] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results [J]. Chem Rev, 1995, 95(3): 735-758.
[13] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95: 69-96.
[14] Vorontsov A V, Savinov E N, Jin Z S. Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation [J]. J Photochemistry and Photobiology A. Chemistry, 1999, 125: 113-117
[15] Sun B, Vorontsov A V, Smirniotis P G. Role of platinum deposited on TiOz in phenol photocatalytic oxidation [J]. Langmuir, 2003, 19(8): 3151-3156.
[16] Pourcelly G, Gavach C. Electrodialysis water splitting- Applications of electrodialysis with bipolar membranes [M]. Handbook on Bipolar Technology. Germany: Kemperman AJB, 2001.
[17] Ren Y X, Chen Z, Geng Y M, et al. Usage of anisoraerie square pulse with fluctuating frequency for electrochemical generation of FeO42- in CS-CMC bipolar membrane electrolysis eell [J]. Chem Eng Process, 2008, 47(4): 708- 715.
[18] Simons R. Water splitting in ion- exchange membranes [J]. Electrochim Acta, 1985, 30(3): 275-282.
[19] Simons R. A novel method for preparing bipolar membranes [J]. Electrochim Acta, 1986, 31(9): 1175-1177.
[20] Guibal E, Milot C, Roussy J. Molybdate sorption by cross- linked chitosan beads: Dynamic studies [J]. Water Environ Res, 1999, 71(1): 10-17.
[21] Mafe S, Ramirez P, Alcaraz A. Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane [J]. Chem Phys Lett, 1998, 294 (4/5): 406-412.
[22] Tanioka A, Shimizu K, Miyasaka K, et al. Effect of polymer materials on membrane potential, rectification and water splitting in bipolar membranes [J]. Polymer, 1996, 37 (10) 1883-1889.
[23] Schaffner F, Pontaher P Y, Sanchez V, et al. Comparison of diester waste treatment by conventional and bipolar electrodialysis [J]. Desalination, 2004, 170(2) : 113-121.
[24] 郑亚萍,宁荣昌,陈立新.纳米材料对环氧树脂耐热性的改性研究[J].热固性树脂,2006,21(1):18-20.
[25] 陈玉峰.电生成Fenton试剂在废水处理中应用的研究[D].福州:福建师范大学,2004:1-25.
[26] 陈强,谢鸿芳,陈晓,等.TiO2-蒽醌改性双极膜在光助电催化降解苯酚中的应用[J].福建师范大学学报:自然科学版,2011,27(1):62-66.
[27] 娄红波,王建中,张萍,等.电化学法处理苯酚模拟废水的研究[J].环境科学与管理,2008,33(2):72-76.
[28] 陈影声,陈震,陈日曜,等.NiO-TiO2同轴纳米纤维的制备及光催化[J].复合材料学报,2011,28(2):36-41.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%