在衬底上溅射沉积一层金属钒膜,然后对其退火制备氧化钒薄膜.研究了原位退火热处理和后续退火热处理对氧化钒薄膜成分及其热敏性能的影响.XPS分析表明,原位380 ℃退火处理得到的氧化钒薄膜中4价态和5价态钒的比例为1.097:1,经后续退火处理后,该比例变为0.53:1;同时,原位退火处理得到的氧化钒薄膜的V/O比为1:2.24,经后续退火处理变为1:2.33.AFM分析后显示,经后续退火处理的薄膜晶粒尺寸有所增大.测试了薄膜方阻随温度的变化,结果显示,生成的薄膜具有明显的金属-半导体相变;原位退火热处理后的薄膜方阻(R)为5.46 kΩ/□(25 ℃),方阻温度系数(TRC)为-1.5%/℃(25 ℃);后续退火热处理后,薄膜方阻增大到231 kΩ/□(25 ℃),方阻温度系数升高为-2.74%/℃(25 ℃).此外,就氧化钒薄膜的成分、热敏性能与退火处理之间的关系进行了讨论.
Vanadium oxide (VO_x) thin films were prepared by a new method. By a two-step procedure, the pure vanadium thin films were first deposited onto the substrates, and then they were annealed to form the VO_x thin films. The effects of annealing on the composition and the thermal-sensitive properties of VO_x films were studied. XPS analysis reveals that the ratios of V~(4+)/V~(5+) are 1.097:1 and 0.53:1 for the as-annealed film and post-annealed film, respectively. Moreover, the ratios of V/O are 1:2.24 and 1:2.33 for the as-annealed film and post-annealed film, respectively. AFM analysis shows that the grain size increases after post-annealing. Analyses of square resistance (R) and its temperature dependence (TCR) demonstrated that the thin films prepared have obvious metal-semiconductor transition. For the as-annealed film and post-annealed film, R□ at 25 ℃ is 5.46 kΩ/□ and 231 kΩ/□, respectively. Moreover, TCR for the as-annealed film and post-annealed film are -1.5 %/℃( 25 ℃) and -2.74 %/℃( 25 ℃), respectively. The experiment suggests that the composition and the thermal-sensitive properties of VO_x films can be improved by certain annealing process. Also, in this paper, the correlative relation among film composition, thermal-sensitive properties and annealing process was discussed.
参考文献
[1] | Adler D .[J].Reviews of Modern Physics,1968,40(04):714. |
[2] | 袁宁一,李金华,林成鲁.氧化钒薄膜的结构、性能及制备技术的相关性[J].功能材料,2001(06):572-575. |
[3] | Chiarello G.;Amoddeo A.;Caputi LS.;Colavita E.;Barberi R. .XPS AND AFM CHARACTERIZATION OF A VANADIUM OXIDE FILM ON TIO2(100) SURFACE[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,1996(1):15-19. |
[4] | Narayan J;Bhosle V M .[J].Journal of Applied Physics,2006,100:103524. |
[5] | Kucharczyk D;Niklewski T .[J].Journal of Applied Crystallography,1979,12:370. |
[6] | Zhu Y Q;Li Y;Huang Y et al.[J].PROCEEDINGS OF THE SPIE,2006,6189:61892. |
[7] | Borodziuk-kulpa A;Stolecki B;Wesowska C .[J].Thin Solid Films,1980,67(01):21. |
[8] | Xiao D;Kim K W;Zavada J M et al.[J].PROCEEDINGS OF THE SPIE,2006,6128:61280. |
[9] | Soltani M;Chaker M;Haddad E et al.[J].Journal of Vacuum Science and Technology A:Vacuum Surfaces and Films,2007,25:971. |
[10] | Ottaviano L;Pennisi A;Simone F et al.[J].Optical Materials,2004,27(02):307. |
[11] | Takahashi K;Wang Y;Cao G Z .[J].Applied Physics Letters,2005,86(05):53102. |
[12] | Lampert CM. .Large-area smart glass and integrated photovoltaics[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2003(4):489-499. |
[13] | Tissot JL .IR detection with uncooled sensors[J].Infrared physics and technology,2004(1/2):147-153. |
[14] | Guinneton, F;Sauques, L;Valmalette, JC;Cros, F;Gavarri, JR .Role of surface defects and microstructure in infrared optical properties of thermochromic VO2 materials[J].The journal of physics and chemistry of solids,2005(1):63-73. |
[15] | Ramana C V;Smith R J;Hussain O M et al.[J].Materials Science and Engineering B,2004,111(2-3):218. |
[16] | Menezes WG;Reis DM;Oliveira MM;Soares JF;Zarbin AJG .Vanadium oxide nanostructures derived from a novel vanadium(IV) alkoxide precursor[J].Chemical Physics Letters,2007(4-6):293-296. |
[17] | 茅昕辉;陈国平;蔡炳初 .[J].真空,2004,4:1. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%