采用微细α-磷酸三钙(α-TCP)粉料、辅助料与冻干牛骨形态发生蛋白(BMP)预先固相混合制备了新型磷酸钙(CPC)/BMP复合生物骨水泥.通过水化、凝固性能研究优化了配料成分、调和液和促凝剂组成;通过大鼠肌袋种植实验研究了骨水泥的异位成骨性能.结果表明:以α-TCP:CaHPO4:CaO(0.95:0.025:0.025)为固相配料,以0.25mol/LNaH2PO4/Na2HPO4混合液([P]T=0.5mol/L)作为调合液可制备性能优异的骨水泥材料,骨水泥初凝时间为6min,终凝时间为30min,固化强度达33MPa,达到临床手术的要求;α-TCP粉料粒度对骨水泥凝固性能影响显著,实验选用α-TCP粉料粒径d50为1.3μm;骨水泥在Hank’s溶液中浸泡5天抗压强度可达最大值;骨水泥块经浸泡后内部生成针状羟基磷灰石晶体的网状结构.新型CPC/BMP复合骨水泥异位成骨作用明显,4周即能快速形成板层骨结构,证明该新型复合材料具有较强的诱导成骨活性.该生物活性骨水泥复合材料可望成为一类新型组织工程骨修复材料.
Calcium phosphate(CPC)/BMP bioactive composite bone cement was prepared with ultrafine α-tricalcium phosphate (α-TCP) powders and assist agent premixed with freezed bone morphogenetic protein
(BMP) powders. By means of the hydraulic characterization, the composition, cement liquid and promoting solidification agent of the bone cement were optimized. Osteogenesis of the BMP combined bone cement
was investigated in the rat muscle pouch. Results show that the novel bone cement with excellent hydraulic properties can be developed with 0.95α-TCP, 0.025CaHPO4, 0.025CaO as the basic composition
and 0.25mol/L NaH2PO4/Na2HPO4 solution([P]T=0.5mol/L)as the cement solution, which can satisfy with the harden strength required for clinic surgery. Initial setting time and final
setting time of the bone cement are 6min and 30min respectively. The particle size of α-TCP has great influence on the characteristics of bone cement, and the suitable particle size (d50)
will be 1.3μm. The compressive strength of the bone cements reaches 33 MPa after soaking in Hank’s solution for 5 days. The morphology of the bone cement becomes a network of hydroxyapatite
(HA) after soaking. Ectopic osteogenesis of CPC/BMP composite bone cement is distinct, and lamellar bone can form within 4 weeks, proving the strong osteo-induction capacity of the materials. This bioactive
bone cement with good hydraulic characteristics and strong osteogenesis is expected to be a promising bone grafting materials for tissue engineering.
参考文献
[1] | Monma H, Ueno S, Kanazawa T. Journal of Chemical technology and biotechnology, 1981, 31(1): 15-24. [2] Atsushi Ehara, Korenori Ogata, Satoshi Imazato, et al. Biomaterials, 2003, 24: 831-836. [3] Knabe C, Driessens F C M, Planell J A, et al. Journal of Biomedical Materials Research, 2000, 52(3): 498-508. [4] YANG Weizhong, ZHOU Dali, YIN Shaoya, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2004, 19(2): 30-34. [5] 杨为中, 周大利, 尹光福, 等(YANG Wei-Zhong et al). 无机材料学报 (Journal of Inorganic Materials), 2004, 19(6): 1359-1366. [6] Urist MR, Lietze A, Mizutani H, et al. Clin Orthop, 1982, 162: 219-232. [7] 戴红莲, 阎玉华, 李世普, 等 (Dai Honglian, et al). 材料科学与工程(Materials Science and Engineering), 2002, 20(3): 331-335 . [8] Chow LC, Takagi S, Ishikawa K. Boca Raton: CRC Press, 1994, 127-137. [9] Takagi S, Chow L C, Ishikawa. Biomaterials, 1998, 19(17): 1593-1599. [10] Frayssinet P, Gineste L, Conte P, et al. Biomaterials, 1998, 19(11-12): 971-977. [11] YU D, WONG J, Matsude Y, et al. J. Phrma. Sci., 1992, 81(6): 529-531. [12] Ohura K, Hamaishi C, Tanaka S, et al. J. Biomed Mater. Res., 1999, 44(2): 168-175. [13] Hamanishi C, Kitanoto K, Tanaka S, et al. J. Biomed Mater. Res., 1996, 33(3): 139-146. [14] Kveton JF, Freidman CD, Piepmeior CM, et al. Laryngoscope, 1995, 105(2): 156-159. [15] Costantino PD, Friedman CD, Lane A, et al. Facial Plastic Surg, 1993, 9(1): 1-6. [16] Kasuya M, Shimize T. Neurosurgry, 1999, 44(2): 422-423. [17] Ross DA, Marentette LJ, Thompson BG, et al. Neurosurgery, 1999, 45(2): 401-403. [18] Milena Fini, Gianluca Giavaresi, Nicolo Nicoli Aldini, et al. Biomaterials, 2002, 23(23): 4523-4531. [19] Yuan H, Yang Z, De Bruijn JD, et al. Biomaterials, 2001, 22(19): 2617-2623. [20] Yang Weizhong, Zhou Dali, Yin Guangfu, et al. J. Mater. Sci. Tech., 2004, 20(6): 661-664. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%