欢迎登录材料期刊网

材料期刊网

高级检索

采用注射成型法制备了羟基磷灰石/聚酰胺66(HA/PA66)多孔支架,用SEM、XRD和DSC等手段表征了支架的形貌和结构,测试了其力学性能。研究表明,调节注射参数(发泡剂和储料量)能控制支架的力学性能、孔径大小和孔隙率。HA能提高支架的刚性,但使孔径和孔隙率下降。在HA/PA66(30/70,质量比)中添加乙烯一醋酸乙烯共聚物(EVA),可改善材料的加工性能和支架的力学性能,有利于孔径增大和均匀孔结构的形成。注射成型法可快速便利地制备多孔支架,使孔径控制在200600μm,孔隙率超过64%,压缩性能达到或超过人体骨小梁,并接近人体松质骨的压缩强度。

Hydroxyapatite/polyamide 66 (HA/PA66) composite porous scaffolds were prepared using injectionmolding technique and analyzed by means of SEM, XRD, DSC and mechanical testing. The results demonstrate that the mechanical properties, porosity and pore size of HA/PA66 composite scaffolds can be effectively controlled by changing the molding parameters (foaming agent and shot size). HA particles increase the stiffness of HA/PA66 composite scaffolds accompanied by the reduction of pore size and porosity. The addition of ethylene-vinyl acetate copolymer (EVA) in HA/PA66 (30/70, mass ratio) scaffolds conduces to the pore growth, the formation of uniform porous structure, the improvement of the scaffoldsr mechanical properties and melt processability of the composites. The injection-molding method can rapidly and conveniently fabricate the composite scaffolds. The obtained scaffolds with a pore size ranging from 200μm to 600 μm and a porosity more than 64% can simultaneously meet the requirements of porous structure and mechanical performance. The compressive properties of the scaffolds are similar to or higher than those of trabecular bone and close to those of the cancellous bone.

参考文献

[1] Vassilis K, David K. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26(27): 5474-5491.
[2] Barbara D B, Thomas W H, David D D, et al. Role of material surfaces in regulating bone and cartilage cell response [J]. Biomaterials, 1996, 17(2): 137-146.
[3] Ziegler J, Mayr-Wohlfart U, Kessler S, et al. Adsorption and release properties of growth factors from biodegradable implants [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 59(3): 422-448.
[4] Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27(18): 3413-3431.
[5] 肖秀峰, 黄琼瑜, 刘榕芳, 等. 纳米羟基磷灰石/聚合物多孔复合支架材料 [J]. 复合材料学报, 2008, 25(6): 39-46.
[6] 王海斌, 赫淑倩, 赵冬梅, 等. 羧甲基壳聚糖/纳米羟基磷灰石复合支架材料的制备及生物安全性 [J]. 复合材料学报, 2008, 25(6): 88-92.
[7] Andrzej K B, Omar F. Effects of the chemical foaming agents, injection parameters, and melt-flow index on the microstructure and mechanical properties of microcellular injection-molded wood-fiber/polypropylene composites [J]. Journal of Applied Polymer Science, 2005, 97(3): 1090-1096.
[8] Guo M C, Heuzey M C, Carreau P J. Cell structure and dynamic propertis of injection molded polypropylene foams [J]. Polymer Engineering and Science, 2007, 47(7): 1070-1081.
[9] Yuan M J, Turng L S. Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites [J]. Polymer, 2005, 46(18): 7273-7292.
[10] Chandra A, Gong S Q, Yuan M J, et al. Microstructure and crystallography in microcellular injection-molded polyamide-6 nanocomposite and neat resin [J]. Polymer Engineering and Science, 2005, 45(1): 52-61.
[11] Gomes M E, Ribeiro A S, Malafaya P B, et al. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: Morphology, mechanical and degradation behaviour [J]. Biomaterials, 2001, 22(9): 883-889.
[12] Wei J, Li Y B. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite [J]. European Polymer Journal, 2004, 40(3): 509-515.
[13] 李 鸿, 李玉宝, 严永刚, 等. 多孔n-HA/PA-6复合材料的制备及性能 [J]. 复合材料学报, 2008, 25(1): 64-68.
[14] Pramanik N, Mohapatra S, Bhargava P, et al. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications [J]. Materials Science and Engineering C, 2009, 29(1): 228-236.
[15] Bhattacharyya A R, Maiti S N, Misra A. Mechanical properties and morphology of PA6/EVA blends [J]. Journal of Applied Polymer Science, 2002, 85(8): 1593-1606.
[16] Wang X D, Li H Q, Ruckenstein E. Cooperative toughening and cooperative compatibilization: The nylon 6/ethylene-co-vinyl acetate/ethylene-co-acrylic acid blends [J]. Polymer, 2001, 42(22): 9211-9216.
[17] Lin A S P, Barrows T H, Cartmell S H, et al. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds [J]. Biomaterials, 2003, 24(3): 481-489.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%