通过对TC11钛合金激光立体成形件沉积态和热处理态组织进行对比研究,探索改善TC11钛合金激光立体成形组织,提高材料高温综合性能的途径.结果表明,TC11钛合金的沉积态组织由贯穿多个熔覆层粗大柱状晶和粗大等轴晶组成,原始柱状β-Ti晶内的微观组织是由条状α和残留β组成.沉积态试样在950 ℃热处理后组织为等轴α、条状α和β转变基体组成的近似三态组织,晶界α大部分破碎球化消失,部分未破碎的晶界上镶嵌有α集束.粗大β晶内等轴α的产生与亚晶有关.在970 ℃热处理后为网篮组织,等轴α较少,α板条有粗化趋势;在1030 ℃再结晶后再经950 ℃热处理的组织是由粗大α板条组成的魏氏组织,在α边界和α内部残留有大量细小β,晶界α基本没有破碎消失.
The as-deposited microstructure and heat-treated microstructure of Ti-6.5Al-3.5Mo-1.5Zr-0.25Si alloys (TC11) by Laser Solid Forming (LSF) were compared, and approaches to improve LSF microstructure and high-temperature combination properties of TC11 alloys were researched. Results show the as-deposited microstructure of TC11 alloy consists of coarse columnar grains and equiaxed grains throughout cladding layers, and the prior columnar β-Ti grains are composed of lathlike α and residual β. The microstructure of as-deposited samples after 950 ℃ heat treatment is a similar triplex mixture of equiaxed α, basketweave α lath and transformed β. The majority of continuous prior α boundary is broken, and become spheroidized and illegible; α laths grow up to bunch on some unbroken boundary; the equiaxed α in coarse β grains is related with subgrains. The microstructure after heat treated at 970 ℃ is a certain basketweave structure consisting of a few equiaxed-α and α laths which have coarsening tendency; the microstructure after recrystallization at 1030 ℃ followed by 950 ℃ heat treatment is typical Widmanst(a)tten structure consisting of coarse α laths, and lots of β-Ti is found to separate out inside α and on α boundaries without breaking basically.
参考文献
[1] | Lana Lineberger.[J].Titanium Aerospace Alloy Advanced Materials&Process,1998(05):45. |
[2] | Harrysson O;Cormier D .[J].Current Advances in Materials and Processes,2005,163(07):72. |
[3] | 陈静,杨海欧,杨健,黄卫东.TC4钛合金的激光快速成形特性及熔凝组织[J].稀有金属快报,2004(04):33-37. |
[4] | 张霜银,林鑫,陈静,黄卫东.热处理对激光成形TC4合金组织及性能的影响[J].稀有金属材料与工程,2007(07):1263-1266. |
[5] | 昝林,陈静,林鑫,张小红,黄卫东.激光快速成形TC21钛合金沉积态组织研究[J].稀有金属材料与工程,2007(04):612-616. |
[6] | Zhou YG;Zeng WD;Yu HQ .An investigation of a new near-beta forging process for titanium alloys and its application in aviation components[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):204-212. |
[7] | Lin X;Li Y M;Wang M et al.[J].Science in China(Series E),2003,46:475. |
[8] | B K 亚历山德罗夫;et al;宁兴龙.钛合金半成品加工[M].Xi'an:Rare Metal Materials and Engineering,1996:34. |
[9] | Wu X;Sharman R;Mei J et al.[J].Materials & Design,2004,25:103. |
[10] | Malzahn Kampe J C;Courtney T H;Leng Y .[J].Acta Metallurgica,1989,37:1735. |
[11] | McLean M .[J].Metal Science Journal,1978,12:113. |
[12] | Sharma G;Ramanujan R V;Tiwari G P .[J].Acta Materialia,2000,48:875. |
[13] | Stefansson N;Semiatin S L;Eylon D .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2003,34A:691. |
[14] | 杨义,徐锋,黄爱军,李阁平.全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J].金属学报,2005(07):713-720. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%