用湿化学法合成了Sr4CoxFe6-xO13±δ系列混合导体氧化物,对其相结构与透氧性能进行了研究.钴离子的引入导致材料中钙钛矿型杂相的出现,X=2.0时材料中还产生了CoO杂相,x=2.6时材料呈现钙钛矿型结构.Sr4Fe4Co2O13±δ的相结构还与焙烧温度及环境气氛中的氧浓度密切相关.随着氧浓度的降低,材料从纯相Sr4Fe6O13结构(纯氧气气氛下)转变为Sr4Fe6O13结构、钙钛矿型结构和CoO共存(空气气氛下),直至转变为针镍矿结构、 Sr4Fe6O13结构和 CoO共存. Sr4Fe6Co13±δ导体膜在air/He氧浓差梯度下的透氧量为 1.5×10-8mol/cm2·s(850℃),在650~850℃范围内透氧活化能为70kJ/mol.
Mixed-conducting Sr4CoxFe6-xO13±δ oxides were synthesized by pyrolysis of cellulose-citric-metal salt compound.
Their crystal structures were investigated, and oxygen permeability of Sr4Co2Fe4O13±δ was also studied by a GC method. The
introduction of cobalt in Sr4Fe6O13 led to the occurrence of perovskite phase in the Sr4Fe6O13 bulk even at low doping
content of cobalt (x=0.5), some minor CoO phase was also observed when x=2.0, and the material mainly demonstrated perovskite structure when
x=2.6. The phase structure of Sr4CoxFe6-xO13±δ was found to be closely related with the calcined temperature and the
oxygen concentration in the ambient atmosphere during calcination or retreatment at high temperature. The air-synthesized sample had the
intergrowth phase Sr4Fe6-xCoxO13±δ and the perovskite phase Sr(Fe, Co)O3-δ coexisted along with CoO impurity. The
N2-annealed sample coexisted of Sr4Fe6O13 phase, brownmillerite phase and minor CoO impuirty. When Sr4Co2Fe4O13±δ
was treated in pure oxygen environment, the sample changed to single phase (Sr4Fe6O13 type phase). The oxygen permeability of
Sr4Co2Fe4O13±δ membrane had a value close to 1.5×10-8mol/cm2·s at 1123K. From 923K to 1223K, the activation energy for oxygen transportation was about 70kJ/mol.
参考文献
[1] | Gellings P J, Bouwmeester H J M. Catal. Today, 1992, 12: 1--105. [2] Steele B C H. Solid. State Ionics, 1995, 76: 321--329. [3] 邵宗平, 熊国兴. 化学进展, 1999, 11 (1): 30--40. [4] Itoh N, Sanchez C M A, Xu W C, et al. J. Membr. Sci., 1993, 77: 245--253. [5] Zeng Y, Lin Y S, Swartz S L. J. Membr. Sci., 1998, 150: 87--98. [6] Tsai C Y, Ma Y H, Moser W R, et al. Chem. Eng. Commun., 1995, 134: 107--132. [7] Balachandran U, Dusek J T, Mieville R L, et al. Appl. Catal. A: Gen., 1995, 133: 19--29. [8] Foster E P, Tijm P J A, Bennett D L. Stud. Surf. Sci. Catal., 1998, 119: 867--874. [9] Balachandran U, Kleefisch M S, Kobylinski T P, et al. U S Patent, 1998. 5, 723, 074. [10] Balachandran U, Kleefisch M S, Kobylinski T P, et al. International Patent, 1994. WO 94/24065. [11] Ma B, Balachandran U. Mater. Res. Bull., 1998, 33: 223--236. [12] Guggilla S, Manthiram A. J. Electrochem. Soc., 1997, 144: L120--L122. [13] Fjellvag H, Hauback B C, Bredesen R. J. Mater. Chem., 1997, 7 (12): 2415--2419. [14] Kim S, Yang Y L, Christoffersen R, et al. Solid. State. Ionics, 1998, 109: 187--196. [15] Balachandran U, Ma B, Maiya P S, et al. Solid. State. Ionics, 1998, 108: 363--370. [16] 邵宗平, 盛世善, 熊国兴, 等. 功能材料, 1998, 28: 1190--1191. [17] Shao Z P, Xiong G X, Sheng S S, et al. Stud. Surf. Sci. Catal., 1998, 108: 431--438. [18] 邵宗平, 熊国兴, 杨维慎(SHAO Zong-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (1): 124--130. [19] Ma B, Hodges J P, Jorgensen J D, et al. J. Solid. State. Chem., 1998, 141: 576--586. [20] Kim S, Yang Y L, Christoffersen R, et al. Solid. State. Ionics., 1997, 104: 57--65. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%