欢迎登录材料期刊网

材料期刊网

高级检索

针对硫浮选泡沫图像噪声大、特征重要度差异显著引起工况难以识别的问题,提出基于模糊支持向量机的硫浮选工况识别方法。通过融合样本模糊隶属度和特征信息增益,获取图像视觉特征的特征重要度;并结合特征重要度矩阵,改进模糊支持向量机的核函数,进而建立工况类别与图像特征之间的关系模型,实现硫浮选工况识别。采用模糊隶属度对噪声赋予较小的权值,并结合模糊隶属度来获取特征重要度矩阵,可以减小噪声样本的影响,以揭示图像特征重要度之间的差异,提高工况识别准确性。锌直接浸出冶炼硫浮选生产过程的实际测试数据验证了方法的有效性。

Considering performance recognition problem caused by the high noise of froth images and the obvious difference of feature importance in sulfur flotation process, a performance recognition method for sulfur flotation process using fuzzy support vector machine was proposed. With the combination of fuzzy membership and feature information gain, the image feature importance was obtained, and the kernel function of fuzzy support vector machine was improved using the feature importance. Then, the model that reveals the relationship between performance and image feature was established to detect sulfur condition. As the fuzzy membership was used to define a small weight for the noise sample and acquire feature importance, which can reduce the effect of image noise points and reveal the difference of feature importance, the classification accuracy is effectively improved. The simulation results show the effectiveness by using actual running data from a sulfur flotation process of zinc direct leaching hydrometallurgy.

参考文献

[1] 阳春华,任会峰,许灿辉,桂卫华.基于稀疏多核最小二乘支持向量机的浮选关键指标软测量[J].中国有色金属学报,2011(12):3149-3154.
[2] B.J. Shean;J.J. Cilliers .A review of froth flotation control[J].International Journal of Mineral Processing,2011(3/4):57-71.
[3] BARTOLACCI G;PATRICK P J;TESSIER J J;DUCHESNE C,BOSSE P A,FOURNIER J .Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes. Part Ⅰ:Flotation control based on froth textural characteristics[J].Minerals Engineering,2006,19(6/8):734-747.
[4] MOOLMAN D W;ALDRICH C;DEVENTER J S J V;STANGE W W .The classification of froth structures in a copper flotation plant by means of a neural net[J].International Journal of Mineral Processing,1995,43(3/4):193-208.
[5] 刘文礼,路迈西,王凡,王勇.煤泥浮选泡沫图像纹理特征的提取及泡沫状态的识别[J].化工学报,2003(06):830-835.
[6] 王红平,齐春,李金标,张忠信.基于主成分分析的矿物浮选泡沫图像分类与识别[J].矿冶,2005(03):79-82.
[7] 王介生,高宪文,张勇.基于图像纹理特征和多级SVM的浮选过程状态识别方法[J].控制与决策,2010(10):1523-1526,1535.
[8] 任会峰,阳春华,周璇,桂卫华,鄢锋.基于泡沫图像特征加权SVM的浮选工况识别[J].浙江大学学报(工学版),2011(12):2115-2119.
[9] 禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011(02):143-149.
[10] Application of Highlight Removal and Multivariate Image Analysis to Color Measurement of Flotation Bubble Images[J].International journal of imaging systems and technology,2009(4):316.
[11] 唐朝晖,刘金平,桂卫华,阳春华.基于数字图像处理的浮选泡沫速度特征提取及分析[J].中南大学学报(自然科学版),2009(06):1616-1622.
[12] LIN Chun-fu;WANG Sheng-de .Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(02):464-471.
[13] 冯瑞,沈伟,张艳珠,邵惠鹤.基于F-SVMs的多模型建模方法[J].控制与决策,2003(06):646-650.
[14] 伍铁斌,阳春华,孙备,朱红求,李勇刚.灰色模糊LSSVM预测模型在锌净化除钴中的应用[J].中国有色金属学报,2012(08):2382-2386.
[15] 汪廷华,田盛丰,黄厚宽.特征加权支持向量机[J].电子与信息学报,2009(03):514-518.
[16] 李昆仑,黄厚宽,田盛丰.模糊多类SVM模型[J].电子学报,2004(05):830-832.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%