欢迎登录材料期刊网

材料期刊网

高级检索

为获得电流密度对于超临界石墨烯复合铸层微观结构和力学性能的影响规律,在超临界二氧化碳流体(SCF-CO2)环境下进行了镍基石墨烯复合电铸试验,采用扫描电镜、数显式显微硬度计、微摩擦磨损试验机、光学轮廓仪等对镍基石墨烯复合电铸层进行表征.结果表明:当电流密度从3 A/dm2逐渐增大至9 A/dm2时,石墨烯复合电铸层的显微硬度、耐磨性呈持续增大趋势;当进一步增大电流密度时,复合电铸层显微硬度和耐磨性开始降低.在压力为10 MPa,温度为52℃,电铸时间为50 min,电流密度为9A/dm2时,石墨烯复合电铸层的显微硬度达到最大860 HV0.2,磨痕截面积最小1 145 μm2,石墨烯含量达最大0.713%.与普通电铸条件相比,SCF-CO2电铸条件制备的石墨烯复合电铸层显微硬度和耐磨性分别提高了1.25倍和1.31倍.

参考文献

[1] Yusuke Tanabe;Hiroyuki Nishikawa;Yoshihiro Seki;Takahiro Satoh;Yasuyuki Ishii;Tomihiro Kamiya;Tohru Watanabe;Atsushi Sekiguchi.Electroforming of Ni mold for imprint lithography using high-aspect-ratio PMMA microstructures fabricated by proton beam writing[J].Microelectronic engineering,20118(8):2145-2148.
[2] Peter T. Tang.Electroforming: from Rocket Engines to Nanotweezers[J].Micro and Nanosystems,20113(3):180-187.
[3] Kihara, Yoshiaki;Nagoshi, Takashi;Chang, Tso-Fu Mark;Hosoda, Hideki;Sato, Tatsuo;Sone, Masato.Tensile behavior of micro-sized specimen fabricated from nanocrystalline nickel film[J].Microelectronic engineering,2015Jun.15(Jun.15):17-20.
[4] 雷卫宁;刘维桥;曲宁松;王江涛.超临界电化学沉积技术的研究进展[J].材料工程,2010(11):83-87.
[5] 刘维桥;雷卫宁;曲宁松;李小平;刘玉峰.基于SCF-CO2电沉积制备纳米材料的研究进展[J].稀有金属材料与工程,2010(11):2064-2068.
[6] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,20085887(5887):385-388.
[7] Chae HK;Siberio-Perez DY;Kim J;Go Y;Eddaoudi M;Matzger AJ.A route to high surface area, porosity and inclusion of large molecules in crystals[J].Nature,20046974(6974):523-527.
[8] Balandin AA;Ghosh S;Bao WZ;Calizo I;Teweldebrhan D;Miao F;Lau CN.Superior thermal conductivity of single-layer graphene[J].Nano letters,20083(3):902-907.
[9] 匡达 .石墨烯/镍基复合材料的制备和性能研究[D].上海交通大学,2012.
[10] 李娟 .石墨烯/镍复合材料的制备和性能研究[D].太原理工大学,2015.
[11] 许书楷.电沉积条件对锌镀层织构的影响[J].电化学,1995(04):408.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%