采用包覆法制备了Ag-20Cu(体积分数,%,下同)复合材料初始锭坯,热挤压成复合线材,再通过冷拉拔大变形制得Ag-20Cu复合丝.分别测量了不同真应变η下复合丝材的力学性能;通过扫描电镜测量不同真应变η下Ag和Cu两相尺寸变化,观察了其断裂形貌.通过上述实验研究了变形过程中Ag-20Cu复合材料的各相变形特征.研究结果表明:变形过程中,由于复合材料各组成相的力学性能不同,Ag和Cu两相发生协调变形,且不同变形阶段两相的协调变形方式不同;由于各相在变形过程中存在不同程度的加工硬化和回复,不同的变形阶段,复合材料的性能变化趋势不同,各相对复合材料性能的影响也不相同.
Ag-20Cu macro-composite wires (volume fraction, %, similarly hereinafter), a new DMMCs(Deformation Metal-Metal Composites), were fabricated by metal clad metal method and post-severe plastic deformation. The mechanical properties of the composite wires were tested at different true strains η, and the size change of the Ag layer and the Cu layer and fracture morphology were observed by SEM. The deformation characteristics of the Ag layer and the Cu layer for the Ag-20Cu composite were studied by the above experiments. The results indicate that the deformation process of the composite mainly contains cooperating deformation between Ag and Cu layers due to their different mechanical properties and the modes of cooperating deformation at different stages are different. Because of work-hardening and recovery to different degrees during deformation, the property change trend of the composite is different and the effects of Ag and Cu layers on the properties of the composites are unlike.
参考文献
[1] | Han K;Sims JR;Campbell LJ;Schneider-Muntau HJ;Pantsyrnyi V.I. -;Shikov A;Nikulin A;Vorobieva A;Embury JD .The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1):99-114. |
[2] | J.S.Song;S.I.Hong;H.S.Kim .Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites[J].Journal of Materials Processing Technology,2001(1/3):610-616. |
[3] | Gao H;Wang J;Shu D et al.[J].Journal of Alloys and Compounds,2007,438(1-2):268. |
[4] | L. Zhang;L. Meng .Microstructure, mechanical properties and electrical conductivity of Cu-12 wt. percent Ag wires annealed at different temperature[J].Materials Letters,2004(30):3888-3892. |
[5] | S.I. Hong;J.S. Song;H.S. Kim .Thermo-mechanical processing and properties of Cu-9Fe-1.2Co microcomposite wires[J].Scripta materialia,2001(11):1295-1300. |
[6] | Zhang L;Meng L .[J].Scripta Materialia,2005,52(12):1187. |
[7] | Lin J;Meng L .[J].Journal of Alloys and Compounds,2008,454(1-2):150. |
[8] | 林剑,刘嘉斌,孟亮.预备热处理对纤维相复合强化Cu-12%Ag合金组织与性能的影响[J].稀有金属材料与工程,2006(z1):254-258. |
[9] | Valiev RZ.;Alexandrov IV.;Islamgaliev RK. .Bulk nanostructured materials from severe plastic deformation [Review][J].Progress in materials science,2000(2):103-189. |
[10] | Xu K;Russell A M;Chumbley L S et al.[J].Scripta Materialia,2001,44(06):935. |
[11] | 孙世清,于艳菊.形变铜基复合材料研究进展[J].热加工工艺,2003(06):50-52. |
[12] | 耿永红,郭迎春,张吉明,刘方方,管伟明,张昆华.大塑性变形金属基纳米纤维复合材料制备工艺与研究现状[J].材料导报,2007(08):67-71. |
[13] | 宁远涛,张晓辉,张婕.大变形Cu-10Ag原位纳米纤维复合材料[J].稀有金属材料与工程,2005(12):1930-1934. |
[14] | Hong S I;Kim P H;Choi Y C .[J].Scripta Materialia,2004,51(02):95. |
[15] | Heringhaus F;Raabe D;Gottstein G .[J].Acta Metallurgica Et Materialia,1995,43(04):1467. |
[16] | S.I. Hong;M.A. Hill .MICROSTRUCTURE AND CONDUCTIVITY OF Cu-Nb MICROCOMPOSITES FABRICATED BY THE BUNDLING AND DRAWING PROCESS[J].Scripta materialia,2001(10):2509-2515. |
[17] | Sun B;Gao H;Wang J et al.[J].Materials Letters,2007,61(4-5):1002. |
[18] | 高海燕,王俊,疏达,孙宝德.Cu-Fe-Ag原位复合材料的组织和性能[J].复合材料学报,2006(06):120-126. |
[19] | 孙世清,毛磊,刘宗茂,郭志猛,殷声.Cu-20vol%(Fe-Cr)原位复合材料中Cr元素的作用[J].材料热处理学报,2003(01):19-22. |
[20] | 卢峰,熊易芬,王健.Cu/Pd复合材料的组织特征及性能研究[J].贵金属,1998(02):8-12. |
[21] | 李宏,熊易芬,卢峰,王健,郑福前,管伟明.Cu/Ag20复合材料的性能研究[J].贵金属,2003(04):44-48. |
[22] | Zhang X;Misra A;Wang H et al.[J].Acta Materialia,2004,52(04):995. |
[23] | Zhou R;Embury J D;Wood J T et al.[J].Materials Characterization,1996,37(05):239. |
[24] | 王秋娜,刘新华,刘雪峰,谢建新.退火温度对冷静液挤压铜包铝线材组织和力学性能的影响[J].金属学报,2008(06):675-680. |
[25] | Funkenbusch P D;Courtney T H .[J].ACTA METALLURGICA,1985,33:913. |
[26] | 张雷,孟亮.应变程度对Cu-12%Ag合金纤维相形成及导电性能的影响[J].金属学报,2005(03):255-259. |
[27] | 高海燕 .高强高导形变Cu-Fe-Ag原位复合材料制备技术基础[D].上海交通大学,2007. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%