欢迎登录材料期刊网

材料期刊网

高级检索

对比研究废弃锂离子电池富钴破碎产物与商品化电极材料的浮选行为,并分析不同浮选行为的机理。结果表明:商品化钴酸锂和石墨的天然可浮性差异较大,将以质量比1:1混合后的模拟物料进行浮选,钴品位由15.66%富集到50.71%;手工拆解废弃锂离子电池得到的钴酸锂颗粒和石墨颗粒表面粗糙,有杂质附着,使得电极材料表面相关元素的含量降低,该杂质为以C、F、P和O元素为主的有机物,使回收的钴酸锂和石墨颗粒表面化学组成相近,造成材料表面润湿性发生改变;富钴破碎产物经浮选后,钴品位由24.21%仅提高到28.08%。因此,浮选前必须对回收的富钴破碎产物进行表面改性,以增大钴酸锂和石墨表面润湿性差异,从而使浮选获得有效的分离。

The floatation behaviors of Co-enriched crushed products and commercialized electrode materials were compared, and the mechanism caused different floatation behavior was analyzed. The results show that, because of a huge floatability difference between commercialized electrode materials, the flotation of simulation material, a mixture of LiCoO2 and graphite, achieve good enrichment, the product grade of Co increases from 15.66% to 50.71%. The organic impurity containing C, F, P and O covers on rough surface of recovered material obtained from disassembled spent lithium-ion batteries. The impurity leads to different surface properties including the content decrease of related elements, similar surface chemical composition of LiCoO2 with graphite, and cause the change of materials surface wettability. After the flotation of Co-enriched crushed products, the grade of Co increases from 24.21% to 28.08%. Therefore, the surface modification must be conducted to the recovered Co-enriched crushed products to enlarge the wettability differences before floatation. As a result, the efficient effect of floatation separation can be achieved.

参考文献

[1] NAN Jun-min, HAN Dong-mei, ZUO Xiao-xi. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152:278-284.,2005.
[2] KANG J, SOHN J S, CHANG H, SENANAYAKE G, SHIN S M. Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method[J]. Advanced Powder Technology, 2010, 21(2):175-179.,2010.
[3] SHIN S M, KIM N H, SOHN J S, DONG H Y, YOUNG H K. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3/4):172-181.,2005.
[4] MANTUANO D P, DORELLA G, ELIAS R C A. MANSUR M B. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with cyanex 272[J]. Journal of Power Sources, 2006, 159(2):1510-1518.,2006.
[5] CHEN Liang, TANG Xin-cun, ZHANG Yang, LI Lian-xing, ZENG Zhi-wen, ZHANG Yi. Process for the recovery of cobalt oxalate from spent lithium-ion batteries[J]. Hydrometallurgy, 2011, 108(1/2):80-86.,2011.
[6] PRANOLO Y, ZHANG W, CHENG C Y. Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system[J]. Hydrometallurgy, 2010, 102(1/4):37-42.,2010.
[7] JHA M K, KUMARI A, JHA A K, KUMSR V, HAIT J, PANDEY B D. Recovery of lithium and cobalt from waste lithium-ion batteries of mobile phone[J]. Waste Management, 2013, 33(9):1890-1897.,2013.
[8] 朱曙光,贺文智,李光明,周旭,张骁君,黄菊文.酸浸和沉淀组合工艺回收废锂离子电池中的钴和锂[J].中国有色金属学报(英文版),2012(09):2274-2281.
[9] 陈亮,唐新村,张阳,瞿毅,王志敏.从废旧锂离子电池中分离回收钴镍锰[J].中国有色金属学报,2011(05):1192-1198.
[10] ZENG Gui-sheng, LUO Sheng-lian, DENG Xiao-rong, LI Lei, AU Chak-tong. Influence of silver ions on bioleaching of cobalt from spent lithium batteries[J]. Minerals Engineering, 2013, 49:40-44.,2013.
[11] XIN Bao-ping, ZHANG Di, ZHANG Xian, XIA Yun-ting, WU Feng, CHEN Shi, LI Li. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria[J]. Bioresource Technology, 2009, 100(24):6161-6169.,2009.
[12] 邓孝荣,曾桂生,罗胜联,罗旭彪,邹建平.氧化亚铁硫杆菌浸出废旧锂离子电池中钴酸锂的电化学行为[J].中南大学学报(自然科学版),2012(07):2500-2505.
[13] 辛宝平,朱庆荣,李是珅,李丽,吴锋.生物淋滤溶出废旧锂离子电池中钴的研究[J].北京理工大学学报,2007(06):551-555.
[14] 张涛,吴彩斌,王成彦,何亚群.废弃手机锂离子电池机械破碎的基础研究[J].中南大学学报(自然科学版),2012(09):3355-3362.
[15] ZHANG Tao, HE Ya-qun, GE Lin-han, FU Ru-san, ZHANG Xia, HUANG Ya-jun. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240(6):766-771.,2013.
[16] ZHANG Tao, HE Ya-qun, WANG Fang-fang, GE Lin-han, ZHU Xiang-nan, LI Hong. Chemical and process mineralogical characterizations of spent lithium-ion batteries:An approach by multi-analytical techniques[J]. Waste Management, 2014, 34:1051-1058.,2014.
[17] 郭炳坤,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社, 2002:55-64. GUO Bing-kun, XU-Hui, WANG Xian-you, XIAO Li-xin. Lithium-ion batteries[M]. Changsha:Central South University Press, 2002:55-64.,2002.
[18] ANTOLINI E. LiCoO2:Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties[J]. Solid State Ionics, 2004, 170(3/4):159-171.,2004.
[19] B A威尔斯, T J纳皮尔·马恩.矿物加工技术[M].印万忠,译.北京:冶金工业出版社, 2011:328-329. WILLS B A, NAPIER·MAHN T J. Wills’ mineral processing technology[M]. 7th ed. YIN Wan-zhong, transl. Beijing:Metallurgical Industry Press, 2011:328-329.,2011.
[20] 金泳勋,松田光明.用浮选法从废锂离子电池中回收锂钴氧化物[J].国外金属矿选矿,2003(07):32-37.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%