采用循环伏安、交流阻抗和充放电测试等研究了使用LiBC_2O_4F_2基电解液的LiFePO_4/Li电池(LiBC_2O_4 F_2电池)和使用LiPF_6基电解液的LiFePO_4/Li电池(LiPF_6电池)的电化学性能.结果表明,常温下LiBC_2O_4 F_2电池和LiPF_6电池的循环伏安曲线都只有1对对应于Fe~(2+)/Fe~(3+)的氧化还原峰,但是高温下LiPF_6电池的氧化还原峰分裂为多个氧化还原峰,而LiBC_2O_4F_2电池的氧化还原峰却与常温下类似,说明LiBC_2O_4F_2电池在高温下工作能保持较好的稳定性.常温下LiBC_2O_4F_2电池的初始放电容量比LiPF_6电池低,但其具有较高的容量保持率,而且在高温下具有比LiPF_6电池更高的放电容量和更优良的循环性能,如经过50次循环后,LiBC_2O_4F_2电池的容量保持率为92.5%,而LiPF_6电池的容量保持率为78.4%.交流阻抗图谱也表明,使用LiBC_2O_4F_2电池在高温下电池的界面电荷传输反应阻抗比室温下有所下降,说明其具有良好的高倍率性能和高温循环性能.
Electrochemical properties of LiFePO_4/Li batteries using LiBC_2O_4F_2-based(LiBC_2O_4F_2 battery)and LiPF_6-based electrolytes(LiPF_6 battery)are studied by cyclic voltammetry,charge-discharge test and AC impedance.The results show that there is only a pair of Fe~(2+)/Fe~(3+)redox peak in cyclic voltammograms of LiBC_2O_4F_2 battery and LiPF_6 battery at room temperature.However,at high temperature,the redox peak of LiPF_6 battery is divided into a number of redox peak,but the redox peak of LiBC_2O_4F_2 battery is very similar to that of LiBC_2O_4F_2 battery at room temperature,which enables LiBC_2O_4F_2 battery tO be operated stably at high temperature.The initial discharge capacity of LiBC_2O_4F_2 battery is lower than that of the LiPF_6 battery,but the retention of its capacity is higher,and LiBC_2O_4F_2 battery processes higher discharge capacity and better cycling pedormance than LiPF_6 battery at high temperatures.For example,after 50 cycles,LiBC_2O_4F_2 battery still retains about 92.5%of the initial capacity at60℃,but LiPF_6 battery only retains about 78.4%of the initial capacity.AC impedance of LiBC_2O_4F_2 battery also shows a low charge-transfer resistance at high temperature,which indieates that LiBC_2O_4F_2 battery processes excellent high-rate performance and cycling performance at high temperature.
参考文献
[1] | 常照荣,吕豪杰,付小宁.LiFePO4的研究进展、问题及解决方法[J].材料导报,2009(01):16-19,31. |
[2] | 杨春巍,张若昕,胡信国,刘建生,赵夫刚.锂离子电池电解质与LiFePO4的相容性问题研究[J].电源技术,2008(08):554-557. |
[3] | LI SHI-YOU;MA PEI-HUA;CUI XIAO-LING .Studies on the thermal decomposition kinetics of LiPF6 and LiBC4O8[J].Journal of Chemical Sciences,2008(2):289-292. |
[4] | Wang QS;Sun JH;Chu GQ;Yao XL;Chen CH .Effect of LiPF6 on the thermal behaviors of four organic solvents for lithium ion batteries[J].Journal of thermal analysis and calorimetry,2007(1):245-250. |
[5] | Shoichi Tsujioka;Hironari Takase et al.Process for synthesizing ionic metal complex[P].EP01308449A2,2003-05-07. |
[6] | Zhang Shengshui .An unique lithium salt for the improved electrolyte of Li-ion battery[J].Electrochemistry Communications,2006,8:1423. |
[7] | Zhang Shengshui .Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiODFB-based electrolyte[J].Journal of Power Sources,2007,163(26):713. |
[8] | Zonghai Chen;zJ. Liu;K. Amine .Lithium Difluoro(oxalato)borate as Salt for Lithium-Ion Batteries[J].Electrochemical and solid-state letters,2007(3):A45-A47. |
[9] | Liu, J;Chen, ZH;Busking, S;Amine, K .Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries[J].Electrochemistry communications,2007(3):475-479. |
[10] | D.P. Abraham;M.M. Furczon;S.-H. Kang;D.W. Dees;A.N. Jansen .Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells[J].Journal of Power Sources,2008(1):612-620. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%