利用雾化热解工艺,在Si(100)衬底上制备了Eu掺杂的ZnO薄膜,通过N2的作用,将前驱体溶液输送到衬底表面,同时为实现ZnO的晶化,衬底温度保持在350℃.通过RBS分析了薄膜和衬底之间的原子分布,结果显示了ZnO薄膜与Si衬底之间存在过渡层.对RBS数据的分析表明该过渡层的形成是由于Si向ZnO层中的扩散,表明Si向氧化物中的扩散是不能忽略的,即使在350℃的低温下.同时,作者利用Fick扩散方程对Si向Eu3+掺杂ZnO薄膜的扩散行为进行了分析,结果表明掺杂离子Eu3+具有阻止Si扩散的能力,其原因可能与Eu3+离子在晶界上的偏析有关.
Eu doped ZnO thin films were deposited on a Si(100)substrate using a spraying pyrolysis method.The precursor solution was sprayed by N2 carrier gas.To form polycrystalline ZnO material,the substrates were set into a tube furnace to maintain the deposition temperature at 350℃.Using a Rutherford backscattering(RBS)system,the atom distribution of elements between the ZnO:Eu thin films and Si(100)substrates was examined.The experiments show that the transition layers exist between ZnO thin films and the Si(100)substrate.The RBS measurements and simulation reveal that the formation of the layer is controlled by the diffusion of Si into the ZnO thin films.This fact indicates that the diffusion of Si into oxide thin films should not be neglected,even at low temperature of 350℃.By applying the Fick's Diffusion Law,the diffusion capability of Si into ZnO thin films with different Eu3+ doping was studied and calculated.It is concluded that the doping Eu3+ will strongly hinder the diffusion of Si into ZnO films due to the precipitation of Eu3+ at the grain boundary.
参考文献
[1] | Yan YF.;Pantelides ST.;Zhang SB. .Control of doping by impurity chemical potentials: Predictions for p-type ZnO[J].Physical review letters,2001(25):5723-5726. |
[2] | Look DC. .Recent advances in ZnO materials and devices[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2001(1/3):383-387. |
[3] | Lin B X;Fu Z X;Jh Y B .[J].Applied Physics Letters,2001,79(07):943. |
[4] | Zamfirescu M;Kavokin A;Gil B et al.[J].Physical Review B:Condensed Matter,2002,65(16):161,205. |
[5] | Carlotti G;Socio G;Petri A et al.[J].Applied Physics Letters,1987,51(23):1889. |
[6] | Reddy KTR.;Reddy TBS.;Forbes I.;Miles RW. .Highly oriented and conducting ZnO : Ga layers grown by chemical spray pyrolysis[J].Surface & Coatings Technology,2002(0):110-113. |
[7] | Kim K K;Kim H S;Hwang D K et al.[J].Applied Physics Letters,2003,83(01):63. |
[8] | Studenikin SA.;Cocivera M.;Golego N. .Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution[J].Journal of Applied Physics,1998(4):2104-2111. |
[9] | Kobayashi H;Mori H;Ishida T et al.[J].Journal of Applied Physics,1995,77(03):1301. |
[10] | Ebothé J;Hichou A;Vautrot P et al.[J].Journal of Applied Physics,2003,93(01):632. |
[11] | Olvera M D L;Maldonado A;Asomoza R .[J].Solar Energy Materials and Solar Cells,2002,71:61. |
[12] | Song J S;Park I J;Yoon K H et al.[J].Journal of the Korean Physical Society,1996,29(02):219. |
[13] | Tuller H L .[J].Journal of Electroceramics,1999,4(z1):33. |
[14] | Funakubo H;Yonetsu M;Shinozaki K et al.[J].Key Engineering Materials,1999,157(01):175. |
[15] | Dakhel AA. .Structure, refractive index dispersion and optical absorption properties of evaporated Zn-Eu oxide films[J].Materials Chemistry and Physics,2003(1):56-62. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%