欢迎登录材料期刊网

材料期刊网

高级检索

采用真空电弧熔炼的方法制备了高熵合金Al0.5CoCrFeNiSi0.2。对其进行600℃到1100℃保温10h后淬水的淬火处理。通过金相显微镜、扫描电镜及附带的能谱仪、X射线衍射仪和透射电镜观察分析合金的组织结构。用显微硬度计测定合金的显微硬度。结果表明:铸态和淬火态的合金组织均呈典型的枝晶形貌,枝晶含有非晶相和纳米级颗粒。在淬火加热温度低于800℃时,随着淬火温度升高,晶粒细化、fcc相含量减少,硬度随淬火温度的升高而提高;当温度升高至900℃后,枝晶相长大,fcc相含量增加,大块枝晶中析出一种富含Al、Ni的θ相,硬度下降。

High-entropy Al0.5CoCrFeNiSi0.2 alloy was prepared by the arc melting and casting method.As-cast alloy was heated at 600℃-1 100℃ for 10h and subsequently quenched into water.Microstructure of the alloy was characterized by optical microscopy(OM),scanning electron microscopy(SEM),X-ray energy-dispersive spectrometry(EDS),X-ray diffractometry(XRD) and transmission electron microscopy(TEM).Hardness of the alloy was measured by a Vickers hardness tester.The results showed that the microstructures of as-cast and as-quenched alloy exhibited typical dendrite and inter-dendrite structures.Dendrites contained an amorphous phase and nano-scale precipitates.When the quenching temperature is lower than 800℃,the hardness of the as-quenched alloy increased with increasing quenching temperature,this can be attributed to dendrite refinement,inter-dendrite phase increase and decrease of the fcc phase.When the quenching temperature is higher than 900℃,the dendrite phase grew up,the fcc phase increased and a Ni-Al rich phase precipitated in the dendrites,which resulted in the hardness of alloy to decrease.

参考文献

[1] Jien-Wei Yeh;Swe-Kai Chen;Jon-Yiew Gan .Communication: Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2004(8):2533-2536.
[2] 陈敏,刘源,李言祥,陈祥.多主元高熵合金AlTiFeNiCuCrx微观结构和力学性能[J].金属学报,2007(10):1020-1024.
[3] 周云军,张勇,王艳丽,陈国良.多组元AlxTiVCrMnFeCoNiCu高熵合金的室温力学性能[J].北京科技大学学报,2008(07):765-769.
[4] X.F. Wang;Y. Zhang;Y. Qiao .Novel microstructure and properties of multicomponent CoCrCuFeNiTi_x alloys[J].Intermetallics,2007(3):357-362.
[5] Y.Y.Chen;T.Duval;U.D.Hung et al.Microstrueture and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel[J].Corrosion Science,2005,47:2257-2279.
[6] 刘源,陈敏,李言祥,陈祥.AlxCoCrCuFeNi多主元高熵合金的微观结构和力学性能[J].稀有金属材料与工程,2009(09):1602-1607.
[7] Dmitri V. Louzguine-Luzgin;Larissa V. Louzguina-Luzgina;Takanobu Saito;Guoqiang Xie;Akihisa Inoue .Structure and properties of high strength and ductile Ti–Fe–Cu–Nb–Sn alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):126-131.
[8] Chung-Jin Tong;Min-Rui Chen;Swe-Kai Chen .Mechanical Performance of the Al_xCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2005(5):1263-1271.
[9] Che-Wei Tsai;Yu-Liang Chen;Ming-Hung Tsai .Deformation and annealing behaviors of high-entropy alloy Al_(0.5)CoCrCuFeNi[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):427-435.
[10] Yuan-Sheng Huang;Ling Chen;Hong-Wei Lui .Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu_(0.5)NiFe high-entropy alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):77-83.
[11] Jien-Min Wu;Su-Jien Lin;Jien-Wei Yeh;Swe-Kai Chen;Yuan-Sheng Huang;Hung-Cheng Chen .Adhesive wear behavior of Al{sub}xCoCrCuFeNi high-entropy alloys as a function of aluminum content[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2006(5/6):513-519.
[12] CHIN-YOU HSU;JIEN-WEI YEH;SWE-KAI CHEN .Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl_(0.5)Fe Alloy with Boron Addition[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2004(5):1465-1469.
[13] Y.Y.Chen;U.T.Hong;H.C.Shih et al.Electrochemical kinetics of the high entropy alloys in aqueous environments-a comparison with type 304 stainless steel[J].Corrosion Science,2005,47:2679-2699.
[14] C.P. Lee;C.C. Chang;Y.Y. Chen;J.W. Yeh;H.C. Shih .Effect of the aluminium content of Al_xCrFe_(1.5)MnNi_(0.5) high-entropy alloys on the corrosion behaviour in aqueous environments[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2008(7):2053-2060.
[15] C.P. Lee;Y.Y. Chen;C.Y. Hsu;J.W. Yeh;H.C. Shih .Enhancing Pitting Corrosion Resistance Of Al_xcrfe_(1.5)mnni_(0.5) High-entropyalloys By Anodic Treatment In Sulfuric Acid[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2008(3):1301-1305.
[16] 唐群华 .Si和B对A10.5CoCrFeNi高熵合金组织结构和性能的影响[D].福州:福州大学,2011.
[17] K.B.Zhang et al.[J].Journal of Alloys and Compounds,2001,502:295-299.
[18] Tao-Tsung Shun;Yu-Chin Du .Microstructure and tensile behaviors of FCC Al_(0.3)CoCrFeNi high entropy alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):157-160.
[19] Akira Takeuchi;Akihisa Inoue .Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element (Overview)[J].Materials transactions,2005(12):2817-2829.
[20] Jien-Wei Yeh;Swe-Kai Chen;Su-Jien Lin;Jon-Yiew Gan;Tsung-Shune Chin;Too-Tsung Shun;Chun-Huei Tsau;Shou-Yi Chang .Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J].Advanced Engineering Materials,2004(5):299-303.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%