高分子材料科学与工程, 1999, 15(5): 166-168.
酰亚胺键扩链的胺-马来酰亚胺的合成和表征
杨宇 1, , 杨绪杰 2, , 李灿 3, , 陆路德 4{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用催化裂解法,以二氯苯为碳源,二茂铁为催化剂,制取了薄壁碳纳米管.引入多壁碳纳米管的薄壁指数?来表征多壁碳纳米管的薄壁程度.研究了氢气流量、反应温度和催化剂浓度对薄壁碳纳米管制取的影响.确定了制取薄壁碳纳米管的优化参数:反应温度为850℃,催化剂浓度为0.06g/ml,氩气流量为500ml/min,氢气流量为200ml/min,反应溶液进给量为0.012ml/min.制备出薄壁指数达5.6的大中空薄壁碳纳米管.","authors":[{"authorName":"常建国","id":"686557d5-187f-4952-ac11-46c05dcbe41d","originalAuthorName":"常建国"},{"authorName":"王志诚","id":"ccb09a3d-6c23-4b11-b1fb-0d0e045fe370","originalAuthorName":"王志诚"},{"authorName":"桂许春","id":"5b0bb787-2933-4baf-a39c-2cde7a6cf1c1","originalAuthorName":"桂许春"},{"authorName":"王文祥","id":"a08683a1-07b1-42af-839d-4e47dbda9471","originalAuthorName":"王文祥"},{"authorName":"韦进全","id":"b43e33f1-66d6-434e-9cbb-c75c0015827e","originalAuthorName":"韦进全"},{"authorName":"吕瑞涛","id":"5dc3ae35-4d5d-4c00-b2b1-533eb619028c","originalAuthorName":"吕瑞涛"},{"authorName":"王昆林","id":"15c2e1b0-a591-4c37-bc55-6bccc301f643","originalAuthorName":"王昆林"},{"authorName":"康飞宇","id":"8761ade0-74de-45c1-bc41-28d79ce4d639","originalAuthorName":"康飞宇"},{"authorName":"黄正宏","id":"bd480813-4c7c-4a4a-825e-1e8d5d5546dc","originalAuthorName":"黄正宏"},{"authorName":"吴德海","id":"1306bb1e-8a1d-4328-b91f-40eb7cc901c2","originalAuthorName":"吴德海"}],"doi":"","fpage":"49","id":"f112c2aa-3745-47c5-8e65-133941f96ad2","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b05f5c0d-8939-47c8-988e-48b87b3b0cf6","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"79a8e8af-7cd8-4bb2-b180-6188b27ac6ad","keyword":"薄壁碳纳米管","originalKeyword":"薄壁碳纳米管"},{"id":"cb5fecf0-d684-4ed9-9fef-116906a3b3f4","keyword":"薄壁指数","originalKeyword":"薄壁指数"}],"language":"zh","publisherId":"clkxygc200801012","title":"薄壁碳纳米管的制取","volume":"26","year":"2008"},{"abstractinfo":"概述了碳纳米材料的发展及它们的性能和应用.同时介绍了一些比较成熟的制备纳米材料的技术.在此基础上分析了碳纳米管的形成过程和碳纳米管的微观结构.以及碳纳米管制备工艺对微观结构的影响.","authors":[{"authorName":"夏正才","id":"e1867f9c-dc93-44b7-a2d7-6e08e90fb3f9","originalAuthorName":"夏正才"},{"authorName":"唐超群","id":"e5a187ae-4993-40bc-8145-9f597b49fa6a","originalAuthorName":"唐超群"},{"authorName":"曹霞","id":"f9af0778-9dff-48e4-9a03-0323f8be4f4a","originalAuthorName":"曹霞"}],"doi":"","fpage":"49","id":"cfd3281e-46b4-474c-8869-3e342b2283f7","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f5b32d45-810a-49f6-9b5d-4ad7c3df26a1","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"1426b56e-909f-4139-888d-3047a25a758a","keyword":"纳米结构","originalKeyword":"纳米结构"}],"language":"zh","publisherId":"cldb200002018","title":"碳纳米管","volume":"14","year":"2000"},{"abstractinfo":"采用摩尔分数1%Ni及负载少量Mo的Ni/MO/MgO催化剂裂解甲烷合成薄壁碳纳米管.通过SEM、TEM、XRD和Raman光谱表征方法研究了碳纳米管直径和催化剂中Ni/Mo比例关系.实验发现:通过控制Ni/Mo比例可以调变催化剂颗粒大小以及活性相.TEM及XRD表征发现,随着Ni/Mo比例的降低,金属Mo相逐渐从NiMo合金相中析出.NiMo合金相对应的活性组分颗粒很小,容易催化裂解甲烷形成薄壁碳纳米管;而后析出的Mo相则主要形成了大管径厚壁的碳纳米管.当Ni/Mo比例为6时可以高选择性地获得窄分布,内径为1.3nm,外径为3.0nm的溥壁碳纳米管.Raman光谱进一步验证了碳纳米管含有较少的缺陷.薄壁碳纳米管形成的关键因素主要体现为碳在其表而的快速扩散以及小颗粒的碳纳米管催化剂活性相控制.","authors":[{"authorName":"张强","id":"9bc5adf4-9a17-4d57-ae55-ef35d378cad2","originalAuthorName":"张强"},{"authorName":"刘毅","id":"6f179153-921a-4292-add7-345ea26e221e","originalAuthorName":"刘毅"},{"authorName":"胡玲","id":"681e72e1-1640-4b85-9e93-c99c03393319","originalAuthorName":"胡玲"},{"authorName":"骞伟中","id":"55221842-1c7a-43a3-b1d5-5b0f3b205961","originalAuthorName":"骞伟中"},{"authorName":"罗国华","id":"3061c619-4166-4d52-ba41-1de852cbc4a4","originalAuthorName":"罗国华"},{"authorName":"魏飞","id":"b686a810-e26e-4823-9a83-a53b666ea109","originalAuthorName":"魏飞"}],"doi":"","fpage":"319","id":"21f8e686-01e1-418e-aac5-5f77236f5b12","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"2fd3cbd0-83d9-4171-9fe5-140ee853d726","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"40a415e2-e7cf-4979-b076-02ec6f4743d8","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"10a8e262-388e-41df-bb8e-02dc823cd02f","keyword":"Ni/Mo/MgO","originalKeyword":"Ni/Mo/MgO"}],"language":"zh","publisherId":"xxtcl200804005","title":"调变Ni/Mo/MgO催化剂中Ni/Mo比例可控合成薄壁碳纳米管","volume":"23","year":"2008"},{"abstractinfo":"制备了壁厚约5nm、管径为140~220 nm薄壁碳纳米管(CNTs)和壁厚约50 nm.管径为80~200nm厚壁碳纳米管.研究了浓HNO3处理对不同壁厚CNTs结构和表面基团的影响.结果表明,经硝酸处理后,厚壁CNTs的双电层充放电电量(Qd)和表面含氧基团氧化所需电量(Qo)分别增加了1.34和0.098 mC,薄壁CNTs的Qd和Qo分别增加了5.69和0.175 mC.表明与厚壁CNTs相比,薄壁CNTs易被切断,表面碳原子易被氧化.当用常规液相还原法将Pt粒子沉积在薄壁和厚壁CN%上后,由于浓HNO3处理过的薄壁CNTs具有大的比表面积和多的含氧基团,Pt粒子更容易均匀的吸附在薄壁CNTs表面,因此,制得的Pt/CNTs催化剂对甲醇氧化有很高的电催化活性.","authors":[{"authorName":"张俊松","id":"e4af0db7-5fb9-431c-a71b-dc23c6aa7826","originalAuthorName":"张俊松"},{"authorName":"李海涛","id":"2b455d25-6b9c-46fc-a424-acdacc7f9a21","originalAuthorName":"李海涛"},{"authorName":"唐亚文","id":"2dd7064b-29b1-4e39-aadc-8e947e8b024d","originalAuthorName":"唐亚文"},{"authorName":"陈煜","id":"a4c67d87-72fe-4c73-ad77-b08139dc7029","originalAuthorName":"陈煜"},{"authorName":"包建春","id":"4149806a-208f-4644-817f-adc1fb5f01b1","originalAuthorName":"包建春"},{"authorName":"周益明","id":"1dc0d908-4bac-4460-b0b4-d17cc13a09e4","originalAuthorName":"周益明"},{"authorName":"陆天虹","id":"9e6d3087-611d-4466-b313-999423b5a8f3","originalAuthorName":"陆天虹"}],"doi":"10.3969/j.issn.1000-0518.2008.03.007","fpage":"290","id":"90b7498a-b62d-4594-b4fa-50240cf7d8f7","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"2b624306-25c7-4f59-a20f-864358edc814","keyword":"铂催化剂","originalKeyword":"铂催化剂"},{"id":"a904ab65-9afa-459e-880c-3ba45ad37282","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"e6917bef-1959-469f-8c8b-f251ac0bae39","keyword":"甲醇","originalKeyword":"甲醇"},{"id":"95361aa8-fc13-4b9b-ad95-e3447509d762","keyword":"直接甲醇燃料电池","originalKeyword":"直接甲醇燃料电池"}],"language":"zh","publisherId":"yyhx200803007","title":"厚壁和薄壁碳纳米管载Pt催化剂制备和对甲醇氧化的电催化活性","volume":"25","year":"2008"},{"abstractinfo":"碳纳米管的研究是国际材料领域的前沿和热点.综述了碳纳米管的制备方法与应用现状.","authors":[{"authorName":"王娟","id":"2d76abd5-f1f2-4322-9006-b6b9341d9bfc","originalAuthorName":"王娟"},{"authorName":"程翥","id":"916944b1-5d23-4d19-9e8c-249f5019a6eb","originalAuthorName":"程翥"}],"doi":"","fpage":"52","id":"21640870-6273-4a04-bdfe-896950cb0c94","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a539024d-6ad4-435e-9927-c8d3a5434908","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"b669c3c0-03a2-441f-a775-75de800a768c","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"2e93b225-5437-4a79-a306-d9d9d890aebf","keyword":"应用现状","originalKeyword":"应用现状"}],"language":"zh","publisherId":"cldb200303015","title":"碳纳米管的研究现状","volume":"17","year":"2003"},{"abstractinfo":"采用催化热解方法分别 制备出碳纳米管和镓掺杂碳纳米管, 并利用丝网印刷工艺将其制备成纳米管薄膜. 对此薄膜进行低场致电子发射测试表明, 碳纳米管和镓掺杂纳米管开启电场分别为2.22和1.0V/μm, 当外加电场为2.4V/μm, 碳纳米管发射电流密度为400μA/cm2, 镓掺杂纳米管发射电流密度为4000μA/cm2. 可见镓掺杂碳纳米管的场发射性能优于同样条件下未掺杂时的碳纳米管. 对镓掺杂纳米管场发射机理进行了探讨.","authors":[{"authorName":"柳堃,晁明举","id":"84dee382-9966-4b9d-a42e-73e9238a9e46","originalAuthorName":"柳堃,晁明举"},{"authorName":"李华洋","id":"70491010-931a-442c-a92c-ff3adf464b8d","originalAuthorName":"李华洋"},{"authorName":"梁二军","id":"dd234753-2257-41e0-8714-65ca174aa122","originalAuthorName":"梁二军"},{"authorName":"袁斌","id":"9560cc51-be08-486e-b527-1221f72ebff1","originalAuthorName":"袁斌"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00181","fpage":"181","id":"739e594c-5d79-4e3b-ad39-7eab2ef405f3","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a08d7af4-f858-45a3-a195-76278b723f68","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"46d66c3d-f5f1-43a5-969e-e0d4e4d8c355","keyword":" Ga-doped carbon nanotubes","originalKeyword":" Ga-doped carbon nanotubes"},{"id":"f5f1593d-7bb1-4af9-87f0-4577e86ad21f","keyword":" field emission","originalKeyword":" field emission"}],"language":"zh","publisherId":"1000-324X_2007_1_2","title":"碳纳米管和镓掺杂碳纳米管场发射性能研究","volume":"22","year":"2007"},{"abstractinfo":"采用催化热解方法分别制备出碳纳米管和镓掺杂碳纳米管,并利用丝网印刷工艺将其制备成纳米管薄膜.对此薄膜进行低场致电子发射测试表明,碳纳米管和镓掺杂纳米管开启电场分别为2.22和1.0V/μm,当外加电场为2.4V/μm,碳纳米管发射电流密度为400μA/cm2,镓掺杂纳米管发射电流密度为4000μA/cm2.可见镓掺杂碳纳米管的场发射性能优于同样条件下未掺杂时的碳纳米管.对镓掺杂纳米管场发射机理进行了探讨.","authors":[{"authorName":"柳堃","id":"6f0b572b-dc88-4092-ac6b-7a54770f9af5","originalAuthorName":"柳堃"},{"authorName":"晁明举","id":"3df57720-905e-404f-9ffc-c91dbd6d35b7","originalAuthorName":"晁明举"},{"authorName":"李华洋","id":"7831395b-085d-4d27-9a60-47ef464f56d9","originalAuthorName":"李华洋"},{"authorName":"梁二军","id":"916d7734-b79c-4a9b-b484-947e9c366f9e","originalAuthorName":"梁二军"},{"authorName":"袁斌","id":"530da580-0f11-4d5a-aa82-6714c9d6675c","originalAuthorName":"袁斌"}],"doi":"10.3321/j.issn:1000-324X.2007.01.038","fpage":"181","id":"6868078e-4f44-4ff1-a8ba-66c0bcfa8a25","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"fe48e528-0439-4ca3-92fb-ab274f640fd0","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"4fa6a568-42aa-4cf1-b558-b4058c60b28e","keyword":"镓掺杂碳纳米管","originalKeyword":"镓掺杂碳纳米管"},{"id":"a2282e24-c54b-4f2c-9215-91004cab1070","keyword":"场发射","originalKeyword":"场发射"}],"language":"zh","publisherId":"wjclxb200701038","title":"碳纳米管和镓掺杂碳纳米管场发射性能研究","volume":"22","year":"2007"},{"abstractinfo":"碳纳米管具有很多奇异的物理、化学性能,组装后的碳纳米管在光、磁、电、催化、机械等方面都展现出更加优异的特性,具有广泛的应用前景.本文对碳纳米管组装技术的现状和最新研究进展情况进行了综述,也讨论了组装机理,并对碳纳米管组装的未来进行了展望.","authors":[{"authorName":"曹慧群","id":"d22f7b59-5009-4c44-85a4-38fd51909c39","originalAuthorName":"曹慧群"},{"authorName":"洪广言","id":"a68455bd-3151-4f44-9c1a-e4d6d184364e","originalAuthorName":"洪广言"},{"authorName":"张吉林","id":"d61eb625-5b1a-423c-b3d3-f6c761d11295","originalAuthorName":"张吉林"},{"authorName":"闫景辉","id":"355f80be-5cd0-48d3-807c-e696f3f6af5d","originalAuthorName":"闫景辉"}],"doi":"","fpage":"633","id":"94e855b4-bdee-46af-a51f-888bbc8daef4","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b0db67d6-4529-4b9f-9e52-d8830f59bf19","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"f0c46101-8b4b-45b8-9d63-8621df468bcb","keyword":"组装","originalKeyword":"组装"},{"id":"2dde974f-cb19-4a50-b144-77150016a64f","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"gncl200306009","title":"碳纳米管的组装","volume":"34","year":"2003"},{"abstractinfo":"阵列式碳纳米管(Aligned Carbon Nanotubes or ANTs)是指碳纳米管垂直于基底生长形成的碳纳米管阵列,在场发射管和生物传感器等领域具有潜在应用价值.介绍了阵列式碳纳米管的主要制备方法和应用.","authors":[{"authorName":"刘勇","id":"f45b91d9-f3ab-488a-99be-18b6d26d2d66","originalAuthorName":"刘勇"},{"authorName":"孙晓刚","id":"c01fd2c6-47a8-431f-9e8b-0a993c2114dc","originalAuthorName":"孙晓刚"},{"authorName":"朱正吼","id":"27095fdf-0f41-45a8-bf65-689a3b0a6df4","originalAuthorName":"朱正吼"},{"authorName":"罗军","id":"9067643f-9d00-4e91-b064-18cc2fd33554","originalAuthorName":"罗军"}],"doi":"","fpage":"56","id":"346efb4f-36bb-42f6-a964-349270ca563e","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f0b88d40-f96a-496c-8886-5b8bda9f92d1","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"d2603201-e0b0-4037-b126-f6176f274464","keyword":"阵列式碳纳米管","originalKeyword":"阵列式碳纳米管"},{"id":"82113860-5e13-4d1b-9e73-b7219af8d57c","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"}],"language":"zh","publisherId":"cldb2005z2017","title":"阵列式碳纳米管研究进展","volume":"19","year":"2005"},{"abstractinfo":"回顾了碳纳米管表面修饰的理论与实验方法,详细介绍了碳纳米管表面修饰的新方法和最新研究进展,并对碳纳米管表面修饰技术给出了简要评价.","authors":[{"authorName":"曹茂盛","id":"d0d48258-5ebd-4bb1-b2b0-9ed4720c3c28","originalAuthorName":"曹茂盛"},{"authorName":"邱成军","id":"969a2ce3-25c6-42fe-bc64-efab94a3a208","originalAuthorName":"邱成军"},{"authorName":"朱静","id":"51c8d0c0-e8c3-491f-83d0-74a5e02987ac","originalAuthorName":"朱静"}],"doi":"10.3969/j.issn.1005-5053.2003.04.013","fpage":"59","id":"e0f6bc22-70b5-486a-8fe1-293b2b9a71ce","issue":"4","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"17cf22d1-5f9b-4f6b-898b-7b8a51112689","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"5e8cf12f-f61a-46a7-ae9b-11d0d89e3bbb","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"de88dcbf-1f25-4cda-a8c0-d45d89f69638","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"11b8a5e7-80ee-4658-b788-63b3602603df","keyword":"电镀","originalKeyword":"电镀"}],"language":"zh","publisherId":"hkclxb200304013","title":"碳纳米管表面修饰的研究进展","volume":"23","year":"2003"}],"totalpage":2751,"totalrecord":27506}