欢迎登录材料期刊网

材料期刊网

高级检索

Chemistry and process optimization of N80 seamless tube was studied by thermo-mechanical simulation tester Gleeble 1500D. Several heats of V-microalloyed steel with different N contents were firstly made at lab in order to simulate N80 seamless tube steel. The results showed that N addition increased strength under condition that toughness was kept at a high level compared with low-N steel. In this study N content with 120-200 ppm enhanced combination performance of strength and toughness whether in-line normalizing process was adopted or not. In-line normalizing process was helpful to improve the toughness though it lowered strength by some degree. However, direct final rolling after tandem rolling (without in-line normalizing) helped increase strength while the toughness remained somehow poor. The above phenomena concerning N80 seamless tube was closely associated with dissolution and precipitation behavior of V(CN). V(CN) precipitation was optimized when N content was increased. When in-line normalizing process was adopted, V(CN) precipitation in austenite increased due to low temperature history during intermediate (in-line) normalizing process. V(CN) particles existing in austenite contributed to grain refinement for VN induced intergranular ferrite, while they weakened precipitation strengthening effect since V precipitating in ferrite wais reduced.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%