生物氧化预处理过程是一个复杂非线性的耦合过程,该过程关键参数氧化还原电位通常难以准确检测。为了预估该参数,将PSO算法与LSSVM相结合构建生物氧化预处理过程氧化还原电位预估模型。该模型采用改进的PSO算法优化LSSVM模型参数,克服了参数恒择的盲目性和耗时,具有恘习速度恩速、预测精度较高以及泛化能力强的优点。以新疆某金矿的实际数据进行仿真研究,结果表明:改进的PSO-LSSVM方法建立的模型的预测值与实测值拟合较好,对于生物氧化预处理过程的关键参数氧化还原电位的预估有一定的指导意义。
The biological oxidation pretreatment process is a complex nonlinear and coupling process. It is difficult to measure the oxidation reduction potential by using conventional physical sensors. A soft sensor model based on the combination of PSO and LSSVM was established to estimate the parameters. To overcome the time consuming and blindness in parameter selection of traditional LSSVM model, PSO algorithm was employed to optimize the parameters of LSSVM soft sensor model. The model had a fast learning speed, high precision and well generalization ability. The results obtained from the real data of a gold mine in Xinjiang for simulation showed that predicted values of PSO-LSSVM model fitted measured values well, suggesting that the model established in our study is useful to measure the key parameters for biological oxidation pretreatment process of oxidation-reduction potential.
参考文献
[1] | 孙理鑫 .难处理金矿生物氧化过程及其反应器的工程基础研究[D].华东理工大学,2012. |
[2] | 韩晓光,郭普金,具滋范.生物氧化提金技术工业生产实践[J].黄金,2006(11):38-41. |
[3] | 訾建威,杨洪英,巩恩普,杨立,赵玉山,范有静.细菌氧化预处理含砷难处理金矿的研究进展[J].贵金属,2005(01):66-70. |
[4] | Suykens J A K;Vandewalle J .Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(03):293-300. |
[5] | Li H;Guo S;Zhao H et al.Annual electric load fore-casting by a least squares support vector machine with a fruit fly optimization algorithm[J].Energies,2012,5(11):4430-4445. |
[6] | 李轩,李建宏,何玉珠,许金玖.基于遗传优化最小二乘支持向量机的导引头故障诊断[J].计算机应用研究,2011(03):899-901,904. |
[7] | Bangzhu Zhu;Yiming Wei .Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology[J].Omega: The international journal of management science,2013(3):517-524. |
[8] | 高丙朋,南新元,魏霞.基于迭代LS-SVM生物氧化提金预处理工艺参数优化算法的研究[J].贵金属,2012(02):40-43. |
[9] | Kennedy J;Eberhart R .Particle swarm optimization[A].Perth:Piscat-away,1995,4(2):1942-1948. |
[10] | van den Bergh F;Engelbrecht AP .A study of particle swarm optimization particle trajectories[J].Information Sciences: An International Journal,2006(8):937-971. |
[11] | Shi Y;Eberhart R C.Parameter selection in particle swarm optimization[A].,1998:591-600. |
[12] | 方科,黄元亮,刘新东.基于自适应PSO算法的LS-SVM牵引变压器绝缘故障诊断模型[J].电力自动化设备,2011(03):85-89. |
[13] | 李威霖,傅攀,张尔卿.基于粒子群优化LS-SVM的车刀磨损量识别技术研究[J].计算机应用研究,2014(04):1094-1097,1101. |
[14] | 刘伟,周育人.一种改进惯性权重的PSO算法[J].计算机工程与应用,2009(07):46-48,55. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%