{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"Q&P(Quenching and Partitioning,淬火配分)工艺在CCE条件下,通过采用Ms和Mr点之间的最佳淬火温度和低于M.点的配分温度,避免配分阶段的体形成最终可以得到最高含量的残余奥氏体组织.但试验中得到不足体积分数8%的残余奥氏体含量限制了钢塑性的提高.通过提出淬火-区配分工艺,并应用在(0.21~0.29)C-(1.5~2.0)Si-(1.5~2.1)Mn成分钢,得到了体积分数12%左右的残余奥氏体含量和25%左右的伸长率,同时强度保持在1 000~1 100 MPa,强塑积最高达到36.6 GPa·%.不同的淬火温度和配分温度试验结果表明,工艺变化对强度影响较低,伸长率和强塑积随着配分温度的提高而提高,其中270℃的淬火温度试样的提高幅度高于245℃淬火试样,采用Q&PB工艺得到了无十马氏体十残余奥氏体的三相组织.淬火和区配分得到了优异的强度和塑性的结合,为新一代汽车用钢的发展提供新的思路.","authors":[{"authorName":"朱帅","id":"63796825-7aa1-4541-8b47-2c1997014e18","originalAuthorName":"朱帅"},{"authorName":"康永林","id":"fb1e1166-d79c-4b68-b36e-bb61a930bd52","originalAuthorName":"康永林"},{"authorName":"邝霜","id":"c74dd169-c0a4-4e20-a559-998b59b589a0","originalAuthorName":"邝霜"},{"authorName":"姜英花","id":"6b8d7b80-be41-43be-ba4a-b384f05b0dcd","originalAuthorName":"姜英花"}],"doi":"","fpage":"69","id":"7c1edd8b-399d-4bde-a585-e1f2e2918019","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"74b7ba23-6afc-4e0e-a115-fa5abe1310fc","keyword":"奥氏体","originalKeyword":"奥氏体"},{"id":"537259bc-e613-46a2-9a98-58fd85e026bb","keyword":"","originalKeyword":"无碳贝氏体"},{"id":"5b1a07c3-0da8-4eff-8930-588ae65b32c8","keyword":"淬火配分","originalKeyword":"淬火配分"},{"id":"ea444b18-ac93-4b5d-a5aa-f79949295fe5","keyword":"三相组织","originalKeyword":"三相组织"}],"language":"zh","publisherId":"gt201406013","title":"淬火-区配分工艺及钢的组织性能","volume":"49","year":"2014"},{"abstractinfo":"40Cr是传动轴常用材料,但是在生产实践中淬火时出现了针束状异常组织,严重影响了零件的性能.本文通过金相显微镜、扫描电子显微镜和原子力显微镜观察分析异常组织,根据其特征判断为,形成的温度区间为500℃~520℃,并对的形核长大机制展开了讨论.异常组织产生的原因是40Cr钢在高温区的冷却速度不足,冷却速度不均匀.通过对冷却介质进行搅拌等提高冷速的方式能够消除异常组织.","authors":[{"authorName":"王志刚","id":"a70be6a3-1454-48c1-920f-5c5052d0eabd","originalAuthorName":"王志刚"},{"authorName":"石磊","id":"672dc90b-6f9d-4dbb-b3b6-2c35bf7983cf","originalAuthorName":"石磊"},{"authorName":"徐勇","id":"317d06d7-ac27-4efd-a812-ce46bc79e2b3","originalAuthorName":"徐勇"},{"authorName":"王献忠","id":"dd806ef7-a142-49ce-a487-564a77a2c4d4","originalAuthorName":"王献忠"},{"authorName":"任潘立","id":"b70fcafe-45cd-4d81-8839-10c63ddc61df","originalAuthorName":"任潘立"}],"doi":"","fpage":"563","id":"9f670e25-7824-499f-99a1-8bdc9bbf8e20","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"557d4d88-d3e8-48f4-bddf-e5eba09a8cf5","keyword":"40Cr","originalKeyword":"40Cr"},{"id":"2dda809c-f343-4c25-910b-5ee045c93fd5","keyword":"异常组织","originalKeyword":"异常组织"},{"id":"309358a6-5ed7-468a-9d52-5a04d57709d0","keyword":"","originalKeyword":"无碳贝氏体"},{"id":"a6c31cc2-2467-417f-85b3-9679970fc5cf","keyword":"亚结构","originalKeyword":"亚结构"}],"language":"zh","publisherId":"clkxygc201404019","title":"40Cr传动轴淬火异常组织分析","volume":"32","year":"2014"},{"abstractinfo":"采用不同焊接工艺参数对X100管线钢进行焊接试验,并对母材进行微观组织观察及宏观力学特性测试,对比分析X100管线钢母材和经历不同焊接热过程后所得焊缝的微观组织及宏观力学特性.结果表明:经历不同焊接热过程后的X100管线钢焊缝组织比母材组织粗大,主要为;冲击韧性比母材略高;抗拉强度和屈服强度与母材基本保持一致.","authors":[{"authorName":"张敏","id":"7f604361-73f5-4e41-ab5e-b5be3f209ac6","originalAuthorName":"张敏"},{"authorName":"李琳","id":"17673044-e342-4b1b-8998-9b611384734f","originalAuthorName":"李琳"},{"authorName":"李继红","id":"bca9ab8e-b458-4c1a-b3f2-4752f28df08f","originalAuthorName":"李继红"}],"doi":"","fpage":"7","id":"6f427bb5-63cf-48ee-a0b4-74ba60eeab3d","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"1fa37e0e-82fc-452e-b8f6-e910398fa08c","keyword":"X100管线钢","originalKeyword":"X100管线钢"},{"id":"abf6ca8a-11ea-4936-acc9-622b790fa76b","keyword":"焊接热过程","originalKeyword":"焊接热过程"},{"id":"d4a2e4e8-369a-484a-af86-7dd0be4600db","keyword":"","originalKeyword":"无碳贝氏体"},{"id":"20a3b21d-5cb2-4a9b-9d78-8fc5a1cadd85","keyword":"焊缝组织","originalKeyword":"焊缝组织"},{"id":"5850a0c1-49c6-436d-9e4d-b4d1f86a281b","keyword":"力学特性","originalKeyword":"力学特性"}],"language":"zh","publisherId":"bqclkxygc201301003","title":"焊接热过程对X100管线钢焊缝组织性能的影响","volume":"36","year":"2013"},{"abstractinfo":"文章研究了高强度超低钢的精细结构.结果表明,高强度超低钢理想的显微组织是碳化物、板条马氏体和下,组织强化(包括细晶强化)是高强度超低钢主要的强化方式,低水平的钒含量对析出强化没有贡献.","authors":[{"authorName":"徐荣杰","id":"f4d29a2d-6c18-42a7-8994-5659ff8472e9","originalAuthorName":"徐荣杰"},{"authorName":"杨静","id":"f3fefad4-459a-4e0f-b217-f1bcf0f55abf","originalAuthorName":"杨静"},{"authorName":"严平沅","id":"efa841a5-6ccf-4044-a158-a2c5565065d2","originalAuthorName":"严平沅"},{"authorName":"王晓峰","id":"1e40dc1e-d5e9-4e7e-a675-884a1f00bac8","originalAuthorName":"王晓峰"}],"doi":"10.3969/j.issn.1001-0777.2007.01.003","fpage":"10","id":"9260c812-c014-47c1-ab46-33a2a26deccb","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"5652b0bb-b78d-4447-8073-d139b9f698a2","keyword":"超低钢","originalKeyword":"超低碳贝氏体钢"},{"id":"e9e8286e-a189-4afe-a366-d3b4736957bf","keyword":"精细结构","originalKeyword":"精细结构"},{"id":"48edb295-37e8-4225-ae25-860f15b93e0e","keyword":"析出强化","originalKeyword":"析出强化"},{"id":"de655dc8-41a5-4be4-9e4d-146350d427ef","keyword":"碳化物","originalKeyword":"无碳化物贝氏体"},{"id":"9f64bc02-efb9-4e06-8b42-65099f007c25","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"wlcs200701003","title":"高强度超低钢显微组织电镜研究","volume":"25","year":"2007"},{"abstractinfo":"以开发与研究超低H型钢为目标,通过合金元素对组织性能影响的研究,设计了适应超低H型钢要求的低成本的合金成分;采用控制轧制和空冷工艺使材料的性能大大超过H型钢开发的目标值;研究了不同加热温度、不同非再结晶区变形量和不同终轧温度条件下材料组织和性能的变化.","authors":[{"authorName":"陈其伟","id":"cd8adb97-00fa-46dc-aaf7-7f035f871401","originalAuthorName":"陈其伟"},{"authorName":"吴结才","id":"a906dc77-3dfb-41e7-9232-e86474e276bd","originalAuthorName":"吴结才"},{"authorName":"蒲玉梅","id":"162d8fc6-e21d-4207-a920-c79a6b682409","originalAuthorName":"蒲玉梅"},{"authorName":"任祥","id":"99521267-4fc0-4660-a306-245513b69966","originalAuthorName":"任祥"},{"authorName":"龚新华","id":"6113c961-a43b-48c7-8f98-113c2d956147","originalAuthorName":"龚新华"}],"doi":"","fpage":"65","id":"4e3689f5-b84a-4755-97b7-f035ac5b28c5","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"93695d1e-42c5-42a8-b20b-ed2968c643ab","keyword":"粒状","originalKeyword":"粒状贝氏体"},{"id":"03098d0b-9183-4f86-9c45-14d1118efe13","keyword":"H型钢","originalKeyword":"H型钢"},{"id":"33283be8-3a4d-4595-a7ec-62c3dfcbab26","keyword":"组织","originalKeyword":"组织"},{"id":"57733aff-2889-4811-9794-8fb4aeeb4fa2","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gt200808015","title":"超低H型钢的试验研究","volume":"43","year":"2008"},{"abstractinfo":"对两阶段控轧控冷的超低钢显微组织进行了光学显微镜和扫描电镜分析.结果表明:扫描电镜更能显示超低钢的特点,纵向显微组织细小,奥氏体晶粒沿轧向被轧成扁平状,方向性明显,晶界清晰可见,奥氏体晶粒宽度在6~13 μm之间;而横向显微组织、心部显微组织、表面显微组织以粒状为主,没有明显的方向性,组织粗大,分布弥散、均匀;粒状和板条只有在两个极端的温度下才有明显的差异,而处于中间过渡温度时很难截然分开.","authors":[{"authorName":"王建泽","id":"799f83cb-ad1e-4138-8e1a-2ab619c92325","originalAuthorName":"王建泽"},{"authorName":"康永林","id":"6d0d4c46-aa74-42f0-9ca4-52dfcd9c10f4","originalAuthorName":"康永林"},{"authorName":"杨善武","id":"701894a5-c71f-4817-8931-1173596ce7b3","originalAuthorName":"杨善武"}],"doi":"10.3969/j.issn.1000-3738.2007.03.004","fpage":"12","id":"05957735-5a70-478f-b776-a687af9fe79d","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"9987ab1c-2e3a-4f1d-b62d-059a8fc51566","keyword":"超低钢","originalKeyword":"超低碳贝氏体钢"},{"id":"b212e975-4e49-48f6-86c2-c163264dc448","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"1c756223-64c9-4230-99a1-3a839f07315b","keyword":"轧制","originalKeyword":"轧制"}],"language":"zh","publisherId":"jxgccl200703004","title":"超低钢的显微组织分析","volume":"31","year":"2007"},{"abstractinfo":"针对试验用钢重点研究经历高温弛豫试样的中温相变点特征、450℃等温下的物相组成、显微组织结构及硬度随等温时间变化特征,以获得高温弛豫过程对不含Nb和Ti等合金化合物析出元素的超低碳钢相变影响的新认识.试验结果表明,高温弛豫过程明显影响试验用钢的中温相变点,使试样的CCT曲线虽然仍具有两区特征,但相对未经历高温弛豫处理试样,在(t,θ)坐标系中的位置偏左上方;高温弛豫后450℃短时等温下形成尺寸较小的板条束状,试样对应有较高的硬度水平,随等温时间延长,体长大,硬度随之下降;而未经历高温弛豫试样在450℃等温时发生变形回复与相变2个过程,在等温时间小于30 min的较短范围内,变形回复与相变过程对硬度影响的综合结果致使试样的硬度变化平缓.","authors":[{"authorName":"刘庆锁","id":"17904f0e-152e-4bbb-9330-f16a84de500f","originalAuthorName":"刘庆锁"},{"authorName":"杨巍巍","id":"e41336c0-d03b-4b5b-b79e-8e360057f3f4","originalAuthorName":"杨巍巍"},{"authorName":"袁连杰","id":"2a17548b-3c7f-4f98-9df0-c6d9fb4c8fec","originalAuthorName":"袁连杰"},{"authorName":"高斌","id":"edbd2485-5a27-47b1-b00e-d01970ce4917","originalAuthorName":"高斌"},{"authorName":"孟亮","id":"e777eaa5-ea75-42a5-b808-c1356d0cc623","originalAuthorName":"孟亮"}],"doi":"10.13228/j.b0yuan.issn0449-749x.20130708","fpage":"88","id":"25cbddd7-fe54-4103-a6f5-615cdcb9b2fd","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"cddc55a2-7a8a-45cd-86af-e6051f62a10f","keyword":"超低碳钢","originalKeyword":"超低碳钢"},{"id":"e30fa18e-4b31-4570-96fa-345401e58bfb","keyword":"高温弛豫","originalKeyword":"高温弛豫"},{"id":"e1ba7be6-c6e5-42dc-894f-23aa2e31d4b0","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"dcf51d84-dab6-491b-97e5-5c47d41cb311","keyword":"回复","originalKeyword":"回复"},{"id":"61257f30-e6fb-4add-b201-b6c714d0f5f9","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"gt201408016","title":"高温弛豫对Nb和Ti等元素超低钢的影响","volume":"49","year":"2014"},{"abstractinfo":"超低(ULCB)钢采用极低的含量,充分利用Mn、Mo、Nb、Ni、Ti、B等元素的合金化作用,通过ULCB组织获得了高的强韧性及优良的低温韧性;由于ULCB钢含量极低,焊接性优良,焊接热影响区(HAZ)韧性明显改善,裂纹敏感性显著降低.ULCB钢焊接时,焊缝金属是焊接接头的薄弱环节,研制开发超低焊接材料是实现ULCB钢焊接的关键环节.","authors":[{"authorName":"马成勇","id":"982e8332-fb03-4332-a7c4-57e968cc0e48","originalAuthorName":"马成勇"},{"authorName":"田志凌","id":"abb345e6-9dd1-4c7e-a86d-7979ae208a8a","originalAuthorName":"田志凌"},{"authorName":"杜则裕","id":"bdc7ae6a-7968-4cde-b2a5-fa298d66f134","originalAuthorName":"杜则裕"},{"authorName":"刘吉斌","id":"47d847ed-3c43-47d6-8395-38d664c1d9d3","originalAuthorName":"刘吉斌"}],"doi":"","fpage":"68","id":"4f97d94c-a76b-4fee-bcfd-8e01d6b8b3b0","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a26515ea-14cd-49c5-b36a-acc154750c0d","keyword":"ULCB钢","originalKeyword":"ULCB钢"},{"id":"21949988-d39a-4046-b39c-c99fa3e71431","keyword":"强韧性","originalKeyword":"强韧性"},{"id":"9f384e0d-e017-4b3c-a27f-5601a0c5f006","keyword":"低温韧性","originalKeyword":"低温韧性"},{"id":"18766ba0-b089-4641-9b05-a996d8af64bf","keyword":"焊接性","originalKeyword":"焊接性"},{"id":"ebb3a9df-ce9a-4560-90fe-91355fedaed5","keyword":"焊接材料","originalKeyword":"焊接材料"}],"language":"zh","publisherId":"gt200206019","title":"超低钢及其焊接特性","volume":"37","year":"2002"},{"abstractinfo":"某钢铁公司生产的一种低钢,由于生产工艺条件限制未经回火,强度极不稳定。通过对该钢进行金相检测、力学性能检测、断口宏观检测、扫描电镜检测、能谱分析后表明,韧窝尺寸、微观组织、 夹杂物都与强度有一定关系。韧窝尺寸大且较深时,屈服强度较高;板条所占比例大,马奥岛弥散细小,强度相对较高;大尺寸的夹杂物,尤其是铝、钙的氧化物及硫化物,是薄弱环节,容易导致断裂。","authors":[{"authorName":"赵艳海,王吉满,魏俊晓,郭宝顺,尚武顺","id":"a78f8ab3-4dd7-493b-938d-5ebc1e433767","originalAuthorName":"赵艳海,王吉满,魏俊晓,郭宝顺,尚武顺"}],"categoryName":"|","doi":"","fpage":"33","id":"1c3cdb8b-33c8-46f0-97a1-3c171c4a77f0","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"f2ad3c5a-24a6-4453-830d-5e31d3ee45e5","keyword":"强度 ","originalKeyword":"强度 "},{"id":"59adaa75-07b6-45d5-950f-716be2494dc5","keyword":" tensile fracture ","originalKeyword":" tensile fracture "},{"id":"de25b945-af8c-4996-9a5b-b2755053730c","keyword":" microstructure ","originalKeyword":" microstructure "},{"id":"8ae531b5-3d1a-45a6-b9b8-9de3c9438253","keyword":" inclusion","originalKeyword":" inclusion"}],"language":"zh","publisherId":"1001-0777_2012_5_7","title":"低钢强度分析","volume":"30","year":"2012"},{"abstractinfo":"某钢铁公司生产的一种低钢,由于生产工艺条件限制未经回火,强度极不稳定.通过对该钢进行金相检测、力学性能检测、断口宏观检测、扫描电镜检测、能谱分析后表明,韧窝尺寸、微观组织、夹杂物都与强度有一定关系.韧窝尺寸大且较深时,屈服强度较高;板条所占比例大,马奥岛弥散细小,强度相对较高;大尺寸的夹杂物,尤其是铝、钙的氧化物及硫化物,是薄弱环节,容易导致断裂.","authors":[{"authorName":"赵艳海","id":"5e21e98e-1cfd-4c67-b6b0-1ccd6a2ee96f","originalAuthorName":"赵艳海"},{"authorName":"王吉满","id":"b1c68f9d-657a-4d35-aa85-0e92c6674079","originalAuthorName":"王吉满"},{"authorName":"魏俊晓","id":"be66dbe5-24ba-4e5f-aecf-e96db7534aac","originalAuthorName":"魏俊晓"},{"authorName":"郭宝顺","id":"5f19ee46-ae6d-4919-8717-f8e2fe63d0ca","originalAuthorName":"郭宝顺"},{"authorName":"尚武顺","id":"fcbb76dd-7a87-4429-aaca-b137485f071e","originalAuthorName":"尚武顺"}],"doi":"","fpage":"33","id":"3d6c75aa-121d-4b01-9617-9f7043a03f65","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"a56d721b-1419-4458-8f9f-411a827ca358","keyword":"强度","originalKeyword":"强度"},{"id":"3803ca5d-f6f9-4c6d-a7a8-1af8eed4bbaa","keyword":"拉伸断口","originalKeyword":"拉伸断口"},{"id":"1354245c-0c9e-4d0a-af97-486946e94a88","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"f540e0a9-1561-4b37-8f75-08e2fa274bf7","keyword":"夹杂物","originalKeyword":"夹杂物"}],"language":"zh","publisherId":"wlcs201205008","title":"低钢强度分析","volume":"30","year":"2012"}],"totalpage":3950,"totalrecord":39493}