腐蚀与防护, 2012, 33(11): 947-951.
基于BP神经网络的模拟冷却水中碳钢的腐蚀速率预测
伊帆 1, , 李德豪 2, , 郎春燕 3, , 力显微镜表征了制备出的石墨烯结构.结果表明,石墨片层结构被剥离使石墨表面积被释放,导致石墨的团聚势能增加,剥离效果和石墨烯产率下降;连续性稳定分散状态克服了随剥离过程剧增的团聚势能,经4 h机械剥离制备,上层清液石墨烯产量提高率达到21.9%;制备出的厚度为1~2 nm 的单层石墨烯结构完好且处于良好分散状态;该方法为大规模制备石墨烯提供理论和工程指导.","authors":[{"authorName":"邓钏","id":"37d22bbd-902e-46f9-92e5-0cf9f247e702","originalAuthorName":"邓钏"},{"authorName":"尹力","id":"39dc66b9-53ab-45fe-8f81-8d92a8a590f2","originalAuthorName":"尹力"},{"authorName":"葛晓陵","id":"da5e07d2-b50a-495f-b202-50dbc2fa599e","originalAuthorName":"葛晓陵"}],"doi":"10.3969/j.issn.1001-9731.2016.09.033","fpage":"9171","id":"83a4d729-3a11-4e5e-b07a-8efc7d5168f8","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9700a2df-771c-4928-b1f4-cff8a9e01027","keyword":"石墨烯制备","originalKeyword":"石墨烯制备"},{"id":"9c215ee2-27a6-40f9-8e45-348996bf2e60","keyword":"团聚","originalKeyword":"团聚"},{"id":"b6188838-16cc-4281-9d5b-b9332d53801b","keyword":"连续稳定分散","originalKeyword":"连续稳定分散"},{"id":"dd0a7192-6b43-4bc1-8843-e85fa4459d5d","keyword":"石墨烯产量","originalKeyword":"石墨烯产量"}],"language":"zh","publisherId":"gncl201609033","title":"连续稳定分散状态下制备石墨烯?","volume":"47","year":"2016"},{"abstractinfo":"对采用铜模压铸制备的亚快速凝固Al-10Ti中间合金在不同温度和时间下进行保温或重熔处理,采用扫描电镜、光学显微镜和Image-Pro Plus 6.0软件观察和分析Al-10Ti中间合金中Al3Ti相颗粒的微观特征.结果表明:与普通Al-10Ti中间合金相比,亚快速凝固能显著减小合金中Al3Ti相颗粒尺寸、增加其形状因子(φ)值.亚快速凝固Al-10Ti中间合金的最佳熔炼工艺参数为:熔炼温度1300℃,保温时间30~35 min.当保温或重熔温度和保温时间增加时,亚快速凝固Al-1OTi合金中Al3Ti颗粒尺寸和该相的形状因子(φ)值增加.在650℃保温时,Al3Ti相以脱溶析出和Ostwald熟化两种方式长大;在720℃以上重熔时,在重熔初期Al3Ti相以Ostwald熟化和合并生长两种方式长大,在重熔后期则主要以合并方式长大.","authors":[{"authorName":"王建华","id":"98647792-87b4-4c4e-b8ae-f9f01cb17071","originalAuthorName":"王建华"},{"authorName":"李涛","id":"565bd030-a227-4c8c-b149-6ea8494d5a1a","originalAuthorName":"李涛"},{"authorName":"尹力","id":"0bb6a740-76d6-436a-a5fc-e9eda57880d5","originalAuthorName":"尹力"},{"authorName":"李静","id":"0cc42156-9096-4adf-aecb-fa1f4a01b64d","originalAuthorName":"李静"},{"authorName":"苏旭平","id":"bda85178-68b0-4c3f-85e6-c960f0c7c1b4","originalAuthorName":"苏旭平"}],"doi":"","fpage":"19","id":"04ec629d-4b71-4dd8-9494-1ed240d62616","issue":"9","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f5f4b5ca-03e9-48b4-9f53-212c999288c4","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"7f7cdae8-3e43-41d6-914a-146f7b87c3c3","keyword":"Al-10Ti中间合金","originalKeyword":"Al-10Ti中间合金"},{"id":"24cf480b-7788-4a35-b3d1-14f7462b41f2","keyword":"亚快速凝固","originalKeyword":"亚快速凝固"},{"id":"fe40071c-1672-4266-961c-a497331a731a","keyword":"铜模压铸","originalKeyword":"铜模压铸"},{"id":"c1d9ba00-11c5-4ebb-bef9-8ca6708e34ec","keyword":"Al3Ti相","originalKeyword":"Al3Ti相"}],"language":"zh","publisherId":"jsrclxb201309004","title":"亚快速凝固Al-10Ti中间合金中Al3Ti相演变规律","volume":"34","year":"2013"},{"abstractinfo":"采用旋转挂片和SEM,EDS及IR分析研究Q235钢在海水淡化一级反渗透产水中(RO)的腐蚀速度和腐蚀产物变化规律,并利用动电位扫描、电化学阻抗法研究腐蚀过程及腐蚀反应控制步骤。结果表明,Q235钢在海水淡化一级反渗透产水中腐蚀速度在48h内迅速增大至1.4mm/a,其后保持稳定。锈层初期为,γ—FeOOH薄层,随时间延长逐渐转为由Fe304构成的内锈层及由γ-FeOOH和Q-FeOOH构成的外锈层。腐蚀过程受阴极控制,初期腐蚀阻力达到最大,其后由于大量γ-FeOOH在酸性条件下极易转化为对腐蚀反应没有阻滞作用的Fe304,腐蚀阻力迅速减小,腐蚀速度迅速增大,当Q235钢表面γ-FeOOH生成和转化达到平衡后,腐蚀阻力保持稳定,腐蚀速度也不再发生变化。","authors":[{"authorName":"梁沁沁","id":"7fb88104-1dd0-450e-ba4e-f3120b32c9ca","originalAuthorName":"梁沁沁"},{"authorName":"曹顺安","id":"d853ec0b-83df-45ee-a551-d2e71571ed23","originalAuthorName":"曹顺安"},{"authorName":"尹力","id":"b86fba51-df6e-4758-a032-faab14632d30","originalAuthorName":"尹力"},{"authorName":"肖丽","id":"e335db8f-040b-42e7-94ce-12cc6ef24ba1","originalAuthorName":"肖丽"}],"doi":"","fpage":"412","id":"0f406b80-9e2f-4f61-8034-d4c0baf14b26","issue":"5","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"72a0163f-f264-423d-b056-d494ef6c69b0","keyword":"海水淡化","originalKeyword":"海水淡化"},{"id":"1c16413e-1b6d-451c-8ea7-d2b33e1414f7","keyword":"一级反渗透产水","originalKeyword":"一级反渗透产水"},{"id":"ca7a72a3-0a37-41d3-8e10-e410a7857f47","keyword":"Q235","originalKeyword":"Q235"},{"id":"eaf1f04a-fe4a-4583-a3b5-7e54e4598f3e","keyword":"钢腐蚀","originalKeyword":"钢腐蚀"}],"language":"zh","publisherId":"zgfsyfhxb201205011","title":"Q235钢在海水淡化一级反渗透产水中的腐蚀行为","volume":"32","year":"2012"},{"abstractinfo":"采用动态挂片实验,研究了Q235钢在海水及海水淡化一级RO产水中的腐蚀特性,并分析了试片表面的形貌及腐蚀产物成分,以探究Q235钢在一级RO产水中高速腐蚀的原因.结果表明:随时间的延长,Q235钢在海水中的腐蚀速度下降,并趋于稳定,而在一级RO产水中的腐蚀速度逐渐上升,并维持于高位;Q235钢在两种水体中的腐蚀产物,组分相同,但各组分的相对含量及变化趋势有很大差异;一级RO产水中,Q235钢生成的腐蚀产物为球状颗粒,没有海水中产生的针状腐蚀产物致密;一级RO产水的弱酸性促进γ-FeOOH迅速转化为导电氧化物Fe3O4,生成的锈层不连续,不能阻碍氧扩散过程的进行,这是导致Q235钢高速腐蚀的主要原因.","authors":[{"authorName":"尹力","id":"d420dacb-8faf-4eb6-8014-9b3bd272e00c","originalAuthorName":"尹力"},{"authorName":"曹顺安","id":"04b97537-2923-41e6-9dbb-a5f57248ad22","originalAuthorName":"曹顺安"},{"authorName":"吴善宏","id":"7aaf0bc6-f5c2-4cdc-847d-f79fa973874a","originalAuthorName":"吴善宏"},{"authorName":"肖丽","id":"2a1fadc0-7d5d-4bfe-823c-7d0e6e53b6f9","originalAuthorName":"肖丽"}],"doi":"10.3969/j.issn.1001-3660.2012.03.013","fpage":"43","id":"147ead20-b574-451b-a0a3-e606389002ba","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"26d863a4-692d-4c7d-a007-741b89531bdf","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"8551286f-72d4-4a25-aa18-4d1d88613475","keyword":"一级RO产水","originalKeyword":"一级RO产水"},{"id":"cf1466d4-4a59-45f7-b609-48c6effde1b0","keyword":"海水","originalKeyword":"海水"},{"id":"e01d75b9-90f0-4f01-92ac-49dcfe1a263c","keyword":"腐蚀特性","originalKeyword":"腐蚀特性"}],"language":"zh","publisherId":"bmjs201203013","title":"Q235钢在海水及海水淡化一级RO产水中的腐蚀特性研究","volume":"41","year":"2012"},{"abstractinfo":"采用旋转挂片和SEM,EDS及IR分析研究Q235钢在海水淡化一级反渗透产水中(RO)的腐蚀速度和腐蚀产物变化规律,并利用动电位扫描、电化学阻抗法研究腐蚀过程及腐蚀反应控制步骤。结果表明,Q235钢在海水淡化一级反渗透产水中腐蚀速度在48h内迅速增大至1.4mm/a,其后保持稳定。锈层初期为,γ—FeOOH薄层,随时间延长逐渐转为由Fe304构成的内锈层及由γ-FeOOH和Q-FeOOH构成的外锈层。腐蚀过程受阴极控制,初期腐蚀阻力达到最大,其后由于大量γ-FeOOH在酸性条件下极易转化为对腐蚀反应没有阻滞作用的Fe304,腐蚀阻力迅速减小,腐蚀速度迅速增大,当Q235钢表面γ-FeOOH生成和转化达到平衡后,腐蚀阻力保持稳定,腐蚀速度也不再发生变化。","authors":[{"authorName":"梁沁沁","id":"ff10d8af-bd27-49d9-8923-23deeb971cec","originalAuthorName":"梁沁沁"},{"authorName":"曹顺安","id":"a6238fa1-879a-4fe3-8783-8317f625cf17","originalAuthorName":"曹顺安"},{"authorName":"尹力","id":"921f7acb-6882-44b6-9552-69fd3b2bb28b","originalAuthorName":"尹力"},{"authorName":"肖丽","id":"6e7bd5cf-ecf4-458f-abbc-6e22f028bf75","originalAuthorName":"肖丽"}],"doi":"","fpage":"412","id":"1a4ab14f-5b80-48b0-a47e-95731d8e5450","issue":"5","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"9a227daf-3bc4-4b79-a645-83c175d78910","keyword":"海水淡化","originalKeyword":"海水淡化"},{"id":"d6838f9f-1440-4a58-be3d-9cf7000b5725","keyword":"一级反渗透产水","originalKeyword":"一级反渗透产水"},{"id":"524ff750-71ef-4607-8867-fb423dd64853","keyword":"Q235","originalKeyword":"Q235"},{"id":"0109ef01-3d2a-448b-ba8e-6b5314c4d510","keyword":"钢腐蚀","originalKeyword":"钢腐蚀"}],"language":"zh","publisherId":"zgfsyfhxb201205011","title":"Q235钢在海水淡化一级反渗透产水中的腐蚀行为","volume":"32","year":"2012"},{"abstractinfo":"目的:快速研究大气环境对钢制输电铁塔腐蚀的影响。方法采用室内加速腐蚀实验,研究碳钢试样在湿度和 SO2浓度不同的气氛中的腐蚀行为。结果用极化曲线法测得的金属腐蚀速率与失重法测得的结果具有很高的一致性。相对湿度较低时,改变腐蚀性气体的浓度,对碳钢的腐蚀影响不显著;碳钢在高湿度的含 SO2气氛中会发生严重腐蚀。结论降低湿度是防止或减缓碳钢在含 SO2气氛中腐蚀的有效途径。","authors":[{"authorName":"郭军科","id":"5260e728-5929-42d7-ae9b-cdd2ea60dc19","originalAuthorName":"郭军科"},{"authorName":"于金山","id":"0a42c2ba-1277-43d1-b3c5-eb9e436d95ed","originalAuthorName":"于金山"},{"authorName":"彭翔","id":"4f4aa10a-bb7e-45cb-abe0-d5b85fd4fde8","originalAuthorName":"彭翔"},{"authorName":"尹力","id":"494b0fc2-6d76-441b-adaa-2d6523817de7","originalAuthorName":"尹力"},{"authorName":"曹顺安","id":"e4c8750b-8df3-41e9-a4f4-e6851d372ff3","originalAuthorName":"曹顺安"}],"doi":"","fpage":"68","id":"1b78e370-af4b-4b90-9ac7-b230c08e97c9","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"032fe7f8-3049-4a1e-bc7d-d4173e5527c6","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"83f75315-e6e8-4e81-82a3-3a109ff0822b","keyword":"大气腐蚀","originalKeyword":"大气腐蚀"},{"id":"ad82a15c-3caa-4f2b-952f-233fb717c5d9","keyword":"加速腐蚀实验","originalKeyword":"加速腐蚀实验"},{"id":"26b1b652-8f1a-4585-9cf2-58aa145d781e","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"100ff3d7-f700-449c-bf99-f52920e0a734","keyword":"湿度","originalKeyword":"湿度"}],"language":"zh","publisherId":"bmjs201404014","title":"加速腐蚀实验研究碳钢的大气腐蚀行为","volume":"","year":"2014"},{"abstractinfo":"采用室内加速腐蚀试验,通过表面形貌分析技术和电化学方法研究了盐雾环境中热镀锌、富锌涂料和重防腐蚀涂料对碳钢的保护作用.结果表明,在中性盐雾气氛和海水坏境中,重防腐蚀涂层保护效果最好,富锌涂层次之,热镀锌相对较差;在酸性盐雾环境下,重防腐蚀涂层和富锌涂层皆有良好的保护效果,富锌涂层效果稍强于重防腐蚀涂层.","authors":[{"authorName":"郭军科","id":"bc0a6251-5106-4c6e-b71a-0f69a4654139","originalAuthorName":"郭军科"},{"authorName":"于金山","id":"df434556-301a-44ae-ab9d-c0996c4d8a50","originalAuthorName":"于金山"},{"authorName":"彭翔","id":"e697274b-3791-4bcf-996a-5ab641994f04","originalAuthorName":"彭翔"},{"authorName":"查方林","id":"7b0de59a-6f3f-48af-80da-6e15afc8dc24","originalAuthorName":"查方林"},{"authorName":"尹力","id":"dea90164-54c4-4814-97a0-0c384a043f57","originalAuthorName":"尹力"},{"authorName":"曹顺安","id":"57a5b274-fa5d-42ea-b1ae-e215f65e44bf","originalAuthorName":"曹顺安"}],"doi":"","fpage":"918","id":"54d3c6b2-bdff-4468-afde-c6e6c6194c4b","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"d299555c-5393-4b05-b979-76622e9134eb","keyword":"盐雾腐蚀","originalKeyword":"盐雾腐蚀"},{"id":"4e02283c-6b15-481e-b5d5-961dc3afbb12","keyword":"热镀锌","originalKeyword":"热镀锌"},{"id":"0e6af5ac-d25c-433a-9f9d-3fd4a864c172","keyword":"富锌涂料","originalKeyword":"富锌涂料"},{"id":"9f16e647-54db-4f58-a6fb-416b6b2e808c","keyword":"重防腐蚀涂料","originalKeyword":"重防腐蚀涂料"},{"id":"13a1dc73-ccd8-41ee-8e15-5125ed7020c7","keyword":"碳钢","originalKeyword":"碳钢"}],"language":"zh","publisherId":"fsyfh201310014","title":"盐雾环境中不同涂层对碳钢的保护作用","volume":"34","year":"2013"},{"abstractinfo":"采用失重法、红外光谱、电化学阻抗谱等方法研究了碳钢在3% NaCl溶液中的腐蚀行为.结果表明,锈层会显著影响碳钢的腐蚀过程.锈层由γ-FeOOH及Fe3O4构成;其中γ-FeOOH易被还原而起氧化剂作用,Fe3O4层起大阴极作用,氧可直接在锈层表面还原.锈层不仅不能阻碍碳钢腐蚀过程,而且将加速其腐蚀,最终碳钢腐蚀速率由溶液中的氧极限扩散速率所决定.","authors":[{"authorName":"吴善宏","id":"5d14a09e-3a06-421c-84e6-7f397a54b400","originalAuthorName":"吴善宏"},{"authorName":"肖丽","id":"a6ec514b-f5b8-4b75-8672-ea4aebcfa286","originalAuthorName":"肖丽"},{"authorName":"尹力","id":"eb778eb5-8b71-49f6-96f7-f4616453186c","originalAuthorName":"尹力"},{"authorName":"胡家元","id":"e1eb51eb-c961-47f5-9a17-6b52237c3fa4","originalAuthorName":"胡家元"}],"doi":"","fpage":"811","id":"9e010d29-600b-4d73-bd22-b38bd479095b","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"3bcdc433-425e-46c7-b819-1b7be36dc907","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"6b7fb246-df04-4039-87f5-1bf740c1f6fd","keyword":"3% NaCl溶液","originalKeyword":"3% NaCl溶液"},{"id":"0f2534d1-2a39-4ab1-ab57-9f83d13de4f6","keyword":"锈层","originalKeyword":"锈层"},{"id":"71921d31-86c6-4ca7-a78c-eadc9e19ae22","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"}],"language":"zh","publisherId":"fsyfh201309013","title":"带锈层碳钢在3% NaCl溶液中的腐蚀电化学行为","volume":"34","year":"2013"},{"abstractinfo":"本文采用改进的Hummers法对天然鳞片石墨进行氧化处理制备氧化石墨,并采用机械研磨还原法,制备了还原的氧化石墨样品,研究了机械研磨时间对还原性氧化石墨导电性的影响.采用XRD、红外光谱和紫外光谱对样品进行了结构,谱学和化学成分表征,发现机械研磨能使氧化石墨的含氧官能团减少;在一定时间内研磨能还原氧化石墨,研磨时间过长又会重新氧化;机械研磨20h,还原性氧化石墨样品的导电性最高,为26S/cm,继续研磨,还原性氧化石墨样品的导电性又会下降.结果表明,机械研磨法能够还原氧化石墨,且与研磨时间有关,为还原氧化石墨的研究提供了新的参考.","authors":[{"authorName":"刘诗念","id":"916e3b0d-96da-4742-9afc-b8d3dfb6fb9d","originalAuthorName":"刘诗念"},{"authorName":"尹力","id":"fb71f0a6-1692-40f4-9b6b-f644d1963b72","originalAuthorName":"尹力"},{"authorName":"邓钏","id":"9a7f1d39-d565-450a-81ae-7cd7ca1e8645","originalAuthorName":"邓钏"},{"authorName":"葛晓陵","id":"74bf1997-c8db-44c8-bbce-a3ec5f0607e7","originalAuthorName":"葛晓陵"}],"doi":"10.14136/j.cnki.issn 1673-2812.2016.05.003","fpage":"698","id":"93ba988c-73d1-47e8-a735-8772a91c3d15","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"a7316911-6cda-4d83-b1ab-02146200f443","keyword":"Hummers法","originalKeyword":"Hummers法"},{"id":"e9c96095-4960-4ee1-965a-eb8fd0cea294","keyword":"氧化石墨","originalKeyword":"氧化石墨"},{"id":"3ec2ae40-18c8-43cd-9da8-5266d02678d6","keyword":"机械研磨","originalKeyword":"机械研磨"}],"language":"zh","publisherId":"clkxygc201605003","title":"机械研磨法还原氧化石墨及其结构表征","volume":"34","year":"2016"},{"abstractinfo":"以氧化铝、碱式碳酸镁和二氧化硅为原料,用固相合成法制备了堇青石-假蓝宝石复相陶瓷材料.用阿基米德法测量了其开口气孔率,用X射线衍射仪研究了该材料成分组成.测试其介电性能,并重点分析讨论了气孔率、假蓝宝石含量、烧结助剂含量、晶格常数对此复相材料的介电性能的影响.结果表明,该材料具有低的介电常数和较小的介电损耗,介电常数ε<7.0,介电损耗tgδ<10-3.","authors":[{"authorName":"杨海波","id":"6ac75fb6-54ed-421f-8497-3769ab3295d8","originalAuthorName":"杨海波"},{"authorName":"梁辉","id":"706a2fc8-512b-43f9-a248-b20de06cbd32","originalAuthorName":"梁辉"},{"authorName":"尹力","id":"eb642b3f-d04c-42cb-8019-b4c721f3f150","originalAuthorName":"尹力"}],"doi":"","fpage":"823","id":"1c218cef-8541-47d9-9b35-44c5dc53ee16","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"babe4aa9-a232-4ebc-9237-3a851c443672","keyword":"堇青石-假蓝宝石复相陶瓷","originalKeyword":"堇青石-假蓝宝石复相陶瓷"},{"id":"72d7dfa3-86c7-4e5b-9bd2-410676ba42a2","keyword":"介电常数","originalKeyword":"介电常数"},{"id":"cbada6d8-487e-4d61-b16a-f2b70ddb0302","keyword":"介电损耗","originalKeyword":"介电损耗"},{"id":"10fb4d66-5248-43ad-9682-b0a57a5a5399","keyword":"假蓝宝石","originalKeyword":"假蓝宝石"}],"language":"zh","publisherId":"xyjsclygc2005z2057","title":"堇青石-假蓝宝石复相陶瓷的介电性能","volume":"34","year":"2005"}],"totalpage":501,"totalrecord":5004}