欢迎登录材料期刊网

材料期刊网

高级检索

Fe-0.25C-1.5Mn-1.2Si-1.5Ni-0.05Nb(质量分数,%)钢通过淬火-碳分配-回火(Q-P-T)工艺抗拉强度可达1250 MPa以上兼具良好塑性(大于17%),显微组织为位错型板条马氏体、微合金碳化物和薄片状残留奥氏体。通过低温拉伸试验分析了Q-P-T钢在-85~25℃下的力学性能并采用透射电镜观察了试样在25℃和-85℃时拉伸前后的显微组织。结果表明,Q-P-T钢在-70~25℃时显示了良好的低温力学性能,仅当拉伸温度低于-70℃时试样塑性开始出现大幅下降;残留奥氏体在未变形前具有良好的低温稳定性,但在变形过程中会发生马氏体相变,产生相变诱发塑性(TRIP)效应,这是Q-P-T钢具有高强度和良好塑性的主要原因。

Fe-0. 25C-1. 5Mn-1.2Si-1.5Ni-0. 05Nb (mass fraction, % ) steel subjected to a novel heat treatment process designated as quenching-partitioning-tempering (Q-P-T) process exhibits high strength (over 1250 MPa) and substantial ductility (elongation over 17% ),for which the microstructure consists of lath martensite, dispersive distributed carbides and thin film-like retained austenite. The mechanical properties of this Q-P-T steel at - 85-25 ℃ were investigated by tensile tests, and the microstructure of the samples before and after tensile tests at 25 ℃ and - 85 ℃ were characterized by transmission electron microscopy (TEM) , respectively. The results show that Q-P-T steel possesses excellent mechanical properties at - 70 ℃to 25℃ , while the elongation decreases obviously when the temperature drops below -70℃. The microstructure characterization indicates that retained austenite, as the soft phase in Q-P-T steels, presents good stability at low temperatures before plastic deformation. However, it will transform into martensite during plastic deformation, showing the transformation induced plasticity (TRIP) effect, which has been considered as the crucial role on the excellent combination of strength and ductility.

参考文献

[1] Chen H C;Era H;Shimizu M .Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1989,20(03):437-445.
[2] Garcia-Mateo, C;Caballero, FG;Chao, J;Capdevila, C;de Andres, CG .Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels[J].Journal of Materials Science,2009(17):4617-4624.
[3] Putatunda S K .Fracture toughness of a high carbon and high silicon steel[J].Materials Science and Engineering A,2001,297(1-2):31-43.
[4] De Cooman BC .Structure-properties relationship in TRIP steels containing carbide-free bainite[J].Current opinion in solid state & materials science,2004(3/4):285-303.
[5] P.J. Jacques;Q. Furnemont;F. Lani;T. Pardoen;F. Delannay .Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing[J].Acta materialia,2007(11):3681-3693.
[6] Shi J;Sun X;Wang M et al.Enhanced work-hardening behavior and mechanical properties in uhrafine-grained steels with large-fractioned metastable austenite[J].Scripta Materialia,2010,63(08):815-818.
[7] Georg FROMMEYER;Udo BRUX;Peter NEUMANN .Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes[J].ISIJ International,2003(3):438-446.
[8] C. Garcia-mateo;F. G. caballero .Ultra-high-strength bainitic steels[J].ISIJ International,2005(11):1736-1740.
[9] Caballero FG;Bhadeshia HKDH .Very strong bainite[J].Current opinion in solid state & materials science,2004(3/4):251-257.
[10] Bhadeshia H K D H;Christian J W .Bainite in steels[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21(03):767-797.
[11] 许峰云,白秉哲,方鸿生.低碳Mn系水淬贝氏体钢的组织和力学性能[J].材料热处理学报,2010(09):83-88.
[12] J. Speer;D. K. Matlock;B. C. De Cooman;J. G. Schroth .Carbon partitioning into austenite after martensite transformation[J].Acta materialia,2003(9):2611-2622.
[13] Speer JG;Edmonds DV;Rizzo FC;Matlock DK .Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J].Current opinion in solid state & materials science,2004(3/4):219-237.
[14] T. Y. Hsu;Zuyao Xu .Design of structure, composition and heat treatment process for high strength steel[J].Materials Science Forum,2007(3):2283-2286.
[15] Zhong, N;Wang, XD;Wang, L;Rong, YH .Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):111-116.
[16] Wang, XD;Zhong, N;Rong, YH;Hsu, TY;Wang, L .Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J].Journal of Materials Research,2009(1):260-267.
[17] Durnin J;Ridal K A .Determination of retained austenite in steel by X-ray diffraction[J].Journal of the Iron and Steel Institute,1968,206(01):60-67.
[18] X.D. Wang;W.Z. Xu;Z.H. Guo;L. Wang;Y.H. Rong .Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching–partitioning–tempering process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(15):3373-3378.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%