以凝胶注模法制备多孔氮化硅陶瓷正交试验结果作为样本,建立3层Back Pmpagation(BP)神经网络,并进行训练以预测陶瓷性能.通过附加试验值对建立的神经网络预测能力进行验证,证明该BP神经网络模型是有效的,能准确预测多孔氮化硅陶瓷性能.通过BP神经网络模型研究多孔氮化硅陶瓷性能的结果表明,随着固含量的增加,气孔率单调下降;固含量存在一优化值,此时陶瓷抗弯强度最大;单体含量越大,气孔率越大,而抗弯强度降低.
Based on orthogonal experimental results of porous SigN4 ceramics by gel casting preparation, a three-layer back propagation (BP) artificial neural network (BP ANN) was developed for prediction of the flexnral strength and porosity. The BP ANN is composed of three neurons in the input layer, two neurons in the output layer and six neurons the hidden layer. This study demonstrates that the proposed neural network approach can predict the performances of porous Si_3N_4 ceramics by gel casting preparation to a high degree of accuracy, and the neural network is a very useful and accurate tool for performances analysis of porous Si_3N_4 ceramics. By the proposed neural network prediction and analysis, the results suggest that the porosity monotonically decreases with the increase of solid loading, flexural strength is low when solid loading was too low or too high, and flexural strength has an optimum value.
参考文献
[1] | Lyckfeldt O;Ferreira J M F .[J].Journal of the European Ceramic Society,1998,18(02):131. |
[2] | Kawai C;Matsuura T;Yamakawa A .[J].Journal of Materials Science,1999,34(05):893. |
[3] | Yang Jianfeng;Ohji T;Kanzaki S et al.[J].Journal of the American Ceramic Society,2002,85(06):1512. |
[4] | 张雯,王红洁,张勇,金志浩.凝胶注模工艺制备高强度多孔氮化硅陶瓷[J].无机材料学报,2004(04):743-748. |
[5] | 张勇,王红洁,张雯,金志浩.高强度多孔氮化硅陶瓷的制备与研究[J].稀有金属材料与工程,2004(06):655-658. |
[6] | Lucon P A;Donovan R P .[J].Composites Part B:Engineering,2007,38(7-8):817. |
[7] | Alex M. Remennikov;Timothy A. Rose .Predicting the effectiveness of blast wall barriers using neural networks[J].International journal of impact engineering,2007(12):1907-1923. |
[8] | 范志刚,邱贵宝,贾娟鱼,白晨光.基于BP神经网络的高炉焦比预测方法[J].重庆大学学报(自然科学版),2002(06):85-87,91. |
[9] | 林新波,张质良,阮雪榆.利用BP神经网络预测材料温锻流动应力[J].上海交通大学学报,2002(04):459-462. |
[10] | 高宪文,张傲岸,魏庆来.基于神经网络的钢包精炼终点预报[J].东北大学学报(自然科学版),2005(08):726-728. |
[11] | 蔡安辉,刘永刚,孙国雄.基于正交实验的BP神经网络预测研究[J].中国工程科学,2003(07):67-71. |
[12] | 韩利芬,李光耀,钟志华,干年妃.神经网络与正交试验设计在板料成形毛坯形状预测中的综合应用[J].中国机械工程,2004(14):1266-1271. |
[13] | 黄鹍,陈森发,亓霞,周振国.基于正交试验法的神经网络优化设计[J].系统工程理论方法应用,2004(03):272-275. |
[14] | Ma Jingtao;Xie Zhipeng;Miao Hezhuo et al.[J].Journal of the European Ceramic Society,2003,23(03):2273. |
[15] | 林新波,张质良,阮雪榆.利用BP神经网络预测材料温锻流动应力[J].上海交通大学学报,2002(04):459-462. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%