欢迎登录材料期刊网

材料期刊网

高级检索

本方案把神经网络控制的学习机制以及模糊控制的人类思维和推理结合起来,用神经网络实现隶属,驱动模糊推理,利用神经网络的模糊建模,达到求精模糊规则的目的。由此可以看出,模糊控制在加热炉中的应用是可行的:一方面,它可以改善控制效果,提高控制精度,从而减小板坯的头尾温差,提高板坯温度的均匀性;另一方面,它可以降低系统燃料消耗,提高成材率,达到节能环保的目的。

This scheme combine the learning mechanism of neural network control with the human thinking and rea-soning of fuzzy control .Neural network is used to implement membership function ,and drive the fuzzy reasoning .U-sing neural network ,fuzzy modeling ,achieve the goal of refinement fuzzy rules .Thus it can be seen that the fuzzy control in the application of heating furnace is feasible ,on the one hand ,it can improve the control effect ,improve the control precision ,thus reducing the slab end temperature difference ,improving the uniformity of the slab tempera-ture ,on the other hand ,it can reduce the fuel consumption of the system ,improve the yield and achieve the goal of energy conservation and environmental protection .

参考文献

[1] 田丽文 .模糊神经网络在加热炉温度控制中的应用[D].北京科技大学,2005.
[2] 唐乐平 .步进式加热炉的双交叉限幅燃烧控制系统[J].钢铁,1996,31(09):57.
[3] 张凯举 .钢铁冶金加热过程建模与综合优化控制方法的研究[D].大连理工大学,2004.
[4] 李士勇.模糊控制.神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998
[5] 李士勇.模糊控制和智能控制理论[M].哈尔滨:哈尔滨工业大学出版社,1990
[6] 霍振宇.基于模糊PID的加热炉炉温控制系统[J].化工自动化及仪表,2011(09):1136-1137,1157.
[7] Hunt K J .Extending the Functional Equivalence of Radial Ba-sis Function Network and Fuzzy Inference System[J].IEEE Transactions on Neural Networks,1996,3(15):16.
[8] Ronald R Yager .Modeling and Formulating Fuzzy Knoledge Base Using Neural Networks[J].NEURAL NETWORKS,1994,7(10):46.
[9] Veslochi T A;Smith C C .Application of a Dynamic Models of a Reheating Furnace[J].Iron and Steel Engineer,1982,32(04):46.
[10] Ma Xiaojun.Analysis and Design of Fuzzy Controller and Fuzzy Observer[A].,1998
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%