{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在交流条件硅酸钠溶液中利用微等离子体氧化技术合成了陶瓷涂层.通过XRD,EPMA分析了所得陶瓷涂层在不同层面上的相组成、微观结构及元素分布.由陶瓷涂层截面的背散射图看出陶瓷涂层较致密、与基体结合强度高.XRD分析结果显示,陶瓷涂层的最外层由莫来石及γ-Al2O3相组成,随着向陶瓷涂层内部的移动,莫来石的含量逐渐减少,α-Al2O3,γ-Al2O3相的含量逐渐提高,而且陶瓷涂层的颜色由白色逐渐变为黑色.硅元素在陶瓷涂层的外侧及陶瓷涂层与基体的交界处陶瓷涂层一侧含量较多,在陶瓷涂层中间含量少.而陶瓷涂层的硬度变化也出现了中间高,两侧低的分布情况.","authors":[{"authorName":"辛世刚","id":"4d13de46-0b8b-40dc-99ca-2bcac304bbd0","originalAuthorName":"辛世刚"},{"authorName":"姜兆华","id":"75c084d6-0a2f-4054-9732-80ec4b5ca711","originalAuthorName":"姜兆华"},{"authorName":"吴晓宏","id":"a6759f3d-c7a2-461c-9b86-97e7e25dc923","originalAuthorName":"吴晓宏"},{"authorName":"赵连城","id":"b254937c-ac9f-4b86-a4de-c21028cb74ac","originalAuthorName":"赵连城"},{"authorName":"","id":"ab178de5-ef01-4982-908f-69818554086c","originalAuthorName":"贲洪奇"}],"doi":"","fpage":"27","id":"36745a40-9694-4e8e-96b9-964b6aa962d6","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"933ef0c5-491e-4cd7-9289-b67c974a5ab7","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"f37b042a-c327-4381-8302-5d65265e91ed","keyword":"微等离子体氧化","originalKeyword":"微等离子体氧化"},{"id":"5e41e494-9e8f-43a0-86fe-1aa1eda3fc64","keyword":"陶瓷涂层","originalKeyword":"陶瓷涂层"},{"id":"4dfbfa7f-93d0-43eb-a627-b48440e752f6","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"xyjsclygc200401007","title":"LY12铝合金表面莫来石陶瓷涂层组成及性能研究","volume":"33","year":"2004"},{"abstractinfo":"采用密度依赖的结团模型研究了Z超重核的禁戒α衰变,α粒子与子核之间的微观核势通过双折叠模型对M3Y核子-核子相互作用势以及α粒子与子核的密度积分给出.α粒子与子核之间的库仑相互作用也通过α粒子与子核的电荷密度积分给出.计算发现,由于非零角动量带来的禁戒效应和小的α粒子预形成几率,Z超重核的α衰变寿命会明显变长.","authors":[{"authorName":"许昌","id":"73d47573-f0bc-44d3-be3d-19387f75c03f","originalAuthorName":"许昌"},{"authorName":"任中洲","id":"10be791a-1deb-4d7c-bddc-302cba0bbfbd","originalAuthorName":"任中洲"}],"doi":"10.11804/NuclPhysRev.30.03.308","fpage":"308","id":"4cdd1cbe-b7c5-4658-9431-1cf0998e759f","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"bfad9a4f-aca2-4589-87e8-ef2a295c5f85","keyword":"α衰变","originalKeyword":"α衰变"},{"id":"e32f707a-1b2a-49b5-9b29-80407b66599e","keyword":"超重核","originalKeyword":"超重核"},{"id":"cf254253-f266-4d3b-9346-6a651541414f","keyword":"结团模型","originalKeyword":"结团模型"}],"language":"zh","publisherId":"yzhwlpl201303011","title":"Z超重核的禁戒α衰变","volume":"30","year":"2013"},{"abstractinfo":"对江西州窑从东汉晚期至晚唐五代8期400个瓷胎样品进行了中子活化分析, 分析结果显示碱金属元素Na和Rb、碱土金属元素Ba及Fe等作为胎的助熔剂元素随年代的变化趋势相似, 都呈现出两头高中间低的U字形变化规律, 其中Fe作为呈色元素, 其含量的高低与瓷胎颜色的深浅是一致的.分析结果还揭示州窑的发展与衰落以及窑址的不断变迁可能都与制瓷原料的发现与消耗有关.对分析数据进行主成分分析, 可以将不同时期烧制的瓷胎样品大致分为5组: (1)东汉晚期东吴时期; (2)两晋和南朝时期; (3)隋代; (4)初唐和盛唐时期; (5)晚唐五代时期.","authors":[{"authorName":"冯向前","id":"bb73e52d-559b-4aa0-9509-23f003727157","originalAuthorName":"冯向前"},{"authorName":"冯松林","id":"13c25759-1db8-425f-b21e-84ae056cff1f","originalAuthorName":"冯松林"},{"authorName":"张文江","id":"8d96cc12-6a67-4944-817b-215bb3dec0c3","originalAuthorName":"张文江"},{"authorName":"樊昌生","id":"e5d11a72-233a-41c4-a38d-1904e5cfad2a","originalAuthorName":"樊昌生"},{"authorName":"权奎山","id":"1f96e504-74c9-4ce8-88b5-559409c26f07","originalAuthorName":"权奎山"}],"doi":"10.3969/j.issn.1007-4627.2005.01.043","fpage":"142","id":"70359f2b-8369-4007-987f-7444de816237","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"5d15414d-1511-4f0b-9870-b7212e945429","keyword":"核分析技术","originalKeyword":"核分析技术"},{"id":"b1f77f43-f953-4410-ad65-387980a986c6","keyword":"州窑古瓷","originalKeyword":"洪州窑古瓷"},{"id":"3118b21f-e76c-44d6-895c-ff785bb4462d","keyword":"元素特征","originalKeyword":"元素特征"}],"language":"zh","publisherId":"yzhwlpl200501043","title":"历代州窑古瓷的元素组成特征的中子活化分析研究","volume":"22","year":"2005"},{"abstractinfo":"利用一种数值方法分析压电材料切口尖端包括奇异应力场和奇异电位移场在内的双重奇异性.基于切口尖端的位移场按幂级数渐近展开假设,从应力平衡方程和Maxwell方程出发,推导出关于压电材料切口性指数的特征方程组,同时将切口的力学和电学边界条件转化为性指数和特征函数的组合表达,从而将压电材料双重性分析问题转化为在相应边界条件下微分方程组的特征值求解问题,采用插值矩阵法,可以一次性地计算出压电材料切口的各阶性指数.裂纹作为切口的特例,其尖端的电弹性性指数亦可以根据本法求出.","authors":[{"authorName":"程长征","id":"ac87b673-f44b-44a8-82fe-4414e775cc23","originalAuthorName":"程长征"},{"authorName":"程香","id":"14c4aa46-513d-4a4d-a6cf-449b449027ef","originalAuthorName":"程香"},{"authorName":"牛忠荣","id":"9c3cfc4d-d7dd-430f-98e4-02bcddc2be71","originalAuthorName":"牛忠荣"},{"authorName":"周焕林","id":"f4562e34-70da-4119-9fec-7e6be9947851","originalAuthorName":"周焕林"}],"doi":"","fpage":"206","id":"cc0b5bf5-385c-4b69-b5bd-4074863eb344","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"7733252e-e8cd-4f1b-835e-68861812184b","keyword":"压电材料","originalKeyword":"压电材料"},{"id":"a4115927-115b-4e92-915c-ca1c6c922f22","keyword":"切口","originalKeyword":"切口"},{"id":"551e9c31-8e90-4aa9-bc10-e742b1f59b3a","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"747aa25c-1c8e-4ad7-b239-6ff800a7a590","keyword":"性指数","originalKeyword":"奇性指数"},{"id":"cdb1c740-363f-48a4-8a14-ebb848fb96da","keyword":"渐近展开","originalKeyword":"渐近展开"}],"language":"zh","publisherId":"fhclxb201302032","title":"压电材料切口性指数计算","volume":"30","year":"2013"},{"abstractinfo":"应用E-GOS(E-Gamma Over Spin)曲线方法研究了A≈110质量区A核结构随角动量增加的演化,发现随着角动量的增加原子核的激发特性从振动逐渐演化为转动.","authors":[{"authorName":"周厚兵","id":"8d078706-c60b-47bf-9803-40b3490b61f0","originalAuthorName":"周厚兵"},{"authorName":"周小红","id":"00628aeb-1cb8-472b-875c-d2ceccad66a2","originalAuthorName":"周小红"},{"authorName":"张玉虎","id":"b5762b83-cbe4-4a6a-83c9-3f75848eccb0","originalAuthorName":"张玉虎"},{"authorName":"郑勇","id":"868c80b0-5e8d-4911-a90f-b3f91c40bbc4","originalAuthorName":"郑勇"},{"authorName":"李广顺","id":"846a9dcf-df12-456d-aa03-29f5f891a3a8","originalAuthorName":"李广顺"},{"authorName":"M.Oshima","id":"bdbb6a2e-029f-4f2b-92d9-c116b3c332ee","originalAuthorName":"M.Oshima"},{"authorName":"Y.Toh","id":"e6acc8c2-f8ba-40ba-999e-8a4140bb640f","originalAuthorName":"Y.Toh"},{"authorName":"M.Koizumi","id":"96519c7c-3a0c-4a27-840e-dd06337014a0","originalAuthorName":"M.Koizumi"},{"authorName":"A.Osa","id":"eafb7665-9f80-45f7-a6c8-1026df2b7c5c","originalAuthorName":"A.Osa"},{"authorName":"Y.Hatsukawa","id":"a5878c65-71c5-4759-bcd7-d2d0cc29a83f","originalAuthorName":"Y.Hatsukawa"}],"doi":"","fpage":"41","id":"a659924d-403d-4d19-b1ba-b960729a2663","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"15e6bbde-be25-4b7a-9ab3-db5d5266daa6","keyword":"E-GOS曲线","originalKeyword":"E-GOS曲线"},{"id":"3c3865b8-a094-495e-acc6-fd9283aef84b","keyword":"相变","originalKeyword":"相变"},{"id":"5af8b9b1-264f-4332-94d8-f04e6be68e7e","keyword":"形状演化","originalKeyword":"形状演化"}],"language":"zh","publisherId":"yzhwlpl201101004","title":"A≈110质量区A核形状演化研究","volume":"28","year":"2011"},{"abstractinfo":"采用传统垂直布里曼法和Cd补偿垂直布里曼法,分别生长出两根尺寸为 30mm×130mm的Ccd0.9Zn0.1Te晶锭.测试了晶体的结晶质量、成分分布、位错腐蚀坑密度(EPD)、红外透过率及电阻率.结果表明,Cd补偿垂直布里曼法生长的晶体结晶质量好、成分分布均匀、EPD低、红外透过性能好且电阻率高.这说明Cd补偿垂直布里曼法是一种生长高阻值CZT晶体的优良方法.","authors":[{"authorName":"李国强","id":"e41ae0c1-35c1-423c-b16b-7eaa3c6368a7","originalAuthorName":"李国强"},{"authorName":"谷智","id":"f3943183-22b9-4c87-8061-74fec1423035","originalAuthorName":"谷智"},{"authorName":"介万","id":"6363c0ee-f482-464e-bbf2-25b9988eb752","originalAuthorName":"介万奇"}],"doi":"","fpage":"95","id":"90ef1469-826d-49ee-9220-8b3d5a944719","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"149aa2db-8fbc-4f81-904e-134e0ff3c70e","keyword":"Cd0.9Zn0.1Te","originalKeyword":"Cd0.9Zn0.1Te"},{"id":"b0b43b20-1e7b-46ad-b9cb-9692f5b2f866","keyword":"Cd补偿垂直布里曼法","originalKeyword":"Cd补偿垂直布里奇曼法"},{"id":"dc302c8a-6379-4aa1-910c-9ae946d4dd9a","keyword":"EPD","originalKeyword":"EPD"},{"id":"67a0144f-cc53-45c5-9f4e-83c385c87583","keyword":"红外透过率","originalKeyword":"红外透过率"},{"id":"3afd3f22-fe63-4b34-97de-372ca147d5b5","keyword":"电阻率","originalKeyword":"电阻率"}],"language":"zh","publisherId":"gncl200301035","title":"Cd补偿垂直布里曼法生长Cd0.9Zn0.1Te晶体","volume":"34","year":"2003"},{"abstractinfo":"本文将复频率谐振子量子化,提出了复频率谐振子的偶相干态概念;计算了复频率谐振子偶相干态下坐标、动量和能量的量子涨落;并对结果进行了讨论。结果表明,通常谐振子的上述结果对应于复频率谐振子的一种特殊情况。","authors":[{"authorName":"邹红梅","id":"9a232c46-7b22-49fa-b7c0-344cbe5a072e","originalAuthorName":"邹红梅"}],"doi":"10.3969/j.issn.1007-5461.2001.01.006","fpage":"28","id":"7b78e42c-8345-41c0-bd6a-50b6fd1ddfe5","issue":"1","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"b6439a97-85fc-49f2-ba8f-93a88c1d97f4","keyword":"谐振子","originalKeyword":"谐振子"},{"id":"b19ee7a8-2128-4c95-8e40-c85c9783a76d","keyword":"复频率","originalKeyword":"复频率"},{"id":"44f3de4b-a49b-436b-9fb7-cd20fee18a66","keyword":"偶相干态","originalKeyword":"偶奇相干态"},{"id":"57ad7641-18db-4f9e-a413-ba44e4298638","keyword":"量子涨落","originalKeyword":"量子涨落"}],"language":"zh","publisherId":"lzdzxb200101006","title":"复频率谐振子的偶相干态及其量子涨落计算","volume":"18","year":"2001"},{"abstractinfo":"对于近年来清华大学与美国合作研究组在原子核结构实验研究中有关A核的多声子γ振动带方面的进展进行了评述。研究人员通过有效的国际合作,识别了质量数A=100丰中子核区的A核103Nb,105Mo,107Tc和109Tc中的两声子γ振动带,这是迄今为止国际上在A核的结构研究中发现的仅有的4例这样的结构。对于实验方法、研究结果以及这些多声子γ振动带的特性进行了评述,并对目前在多声子带其他方面的研究及今后进一步的工作进行了概述。","authors":[{"authorName":"朱胜江","id":"351d1824-1773-4284-ae7b-857f5c79b8fc","originalAuthorName":"朱胜江"},{"authorName":"J.H. Hamilton","id":"2b64af43-63ed-4be2-9127-b50f81aae013","originalAuthorName":"J.H. Hamilton"},{"authorName":"A.V. Ramayya","id":"71a30d1c-05cd-403d-916d-a2638008ffbb","originalAuthorName":"A.V. Ramayya"},{"authorName":"王建国","id":"a67b1051-f9ad-4883-914f-a03b5930c1ae","originalAuthorName":"王建国"},{"authorName":"丁怀博","id":"8c15b317-80bf-4649-9be1-d06eec9b8332","originalAuthorName":"丁怀博"},{"authorName":"顾龙","id":"9c0b4e9b-ee98-4ab0-9c5d-bbbc084e7b61","originalAuthorName":"顾龙"},{"authorName":"J.K. Hwang","id":"76490e67-929f-488c-a15b-cf6b17e4e2ad","originalAuthorName":"J.K. Hwang"},{"authorName":"K. Li","id":"97e83ac4-ef0a-427a-a946-48265811c0c2","originalAuthorName":"K. Li"},{"authorName":"S.H. Liu","id":"a731b559-c15a-482b-838e-c03d3dfcb38c","originalAuthorName":"S.H. Liu"},{"authorName":"N.T. Brewer","id":"fa0d2aca-7d63-4772-bfeb-b04112917afe","originalAuthorName":"N.T. Brewer"},{"authorName":"Y.X. Luo","id":"25837386-b4af-42ee-8f5d-01b0de6afeeb","originalAuthorName":"Y.X. Luo"},{"authorName":"J.O. Rasmussen","id":"08612e95-a6c0-4ac3-81fd-ecf859f392a6","originalAuthorName":"J.O. Rasmussen"},{"authorName":"I.Y. Lee","id":"528b5ef4-10e7-46fb-b3e7-bce124abc3f5","originalAuthorName":"I.Y. Lee"},{"authorName":"徐强","id":"3181b716-1961-4c95-b492-ad817f6cbee5","originalAuthorName":"徐强"},{"authorName":"杨韵颐","id":"18784e9a-f605-472c-b561-6b7241cbf973","originalAuthorName":"杨韵颐"},{"authorName":"肖志刚","id":"1f14a5ec-4199-4870-bd25-2ed28b99b4fc","originalAuthorName":"肖志刚"},{"authorName":"李红洁","id":"e0a1a249-667a-4c41-ab25-8a1377634e8e","originalAuthorName":"李红洁"},{"authorName":"马文超","id":"287dd204-2890-4885-b085-a38cdd400785","originalAuthorName":"马文超"}],"doi":"10.11804/NuclPhysRev.30.02.099","fpage":"99","id":"774b6efe-091b-4538-8791-e0544c848ec5","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"9a173975-8ec8-42b5-81f4-56a41bfd5526","keyword":"原子核结构","originalKeyword":"原子核结构"},{"id":"c902ed25-5acc-401c-8acf-83f3b474911c","keyword":"高自旋态","originalKeyword":"高自旋态"},{"id":"cf6cc1f7-9275-4471-9e14-a7f7f732f370","keyword":"多声子γ振动带","originalKeyword":"多声子γ振动带"},{"id":"0ad0b0fb-a955-4db5-b8f5-07fcfae9a3f1","keyword":"A核","originalKeyword":"奇A核"}],"language":"zh","publisherId":"yzhwlpl201302001","title":"A核的多声子γ振动带实验研究进展","volume":"","year":"2013"},{"abstractinfo":"运用数值计算方法研究了有限维希尔伯特(Hilbert)空间谐振子相干态的振幅平方压缩特性.研究表明,在有限维情景,相干态存在振幅平方压缩效应,并展现了与通常无限维奇相干态截然不同的振幅平方压缩特性;而当维数足够大时,与通常相干态的结果趋于一致.","authors":[{"authorName":"朱从旭","id":"d3562683-4f6c-4361-a769-0bb985fcbdde","originalAuthorName":"朱从旭"},{"authorName":"邓宏贵","id":"0c7c13b8-35c9-45d3-8de2-cffd126ad334","originalAuthorName":"邓宏贵"}],"doi":"10.3969/j.issn.1007-5461.2000.06.004","fpage":"506","id":"27ddb6e0-3e56-4a16-9137-86ee4ce38d2c","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"71ed718a-f3cc-424b-bdab-62f410cbca8e","keyword":"有限维Hilbert空间","originalKeyword":"有限维Hilbert空间"},{"id":"142bfd45-c90b-4d55-80f3-b87e00d52acf","keyword":"相干态","originalKeyword":"奇相干态"},{"id":"f61a6bf1-90d1-4581-a9ee-d390066f3316","keyword":"振幅平方压缩","originalKeyword":"振幅平方压缩"}],"language":"zh","publisherId":"lzdzxb200006004","title":"有限维谐振子相干态振幅平方压缩特性的数值研究","volume":"17","year":"2000"},{"abstractinfo":"对双核~(174)Re的在束γ谱学实验数据作了仔细分析,提取出了带间与带内E2 γ跃迁分支比,并导出了其约化跃迁概率的比值.用带混合理论对约化跃迁概率的比值进行了分析,得到带间相互作用强度及转动带形变的信息.发现不同组态的转动带其跃迁电四极矩具有明显的差异.与相邻A核的结构特征类似,这种跃迁电四极矩的差异很可能是由于1/2~-[541]准质子或1/2~-[521]准中子对原子核的形状驱动效应造成的.","authors":[{"authorName":"郭松","id":"ed04dd36-4f0e-45c1-bc3e-68c944e9426b","originalAuthorName":"郭松"},{"authorName":"张玉虎","id":"f02b8d31-064a-4bc3-9866-3be0ddba18ca","originalAuthorName":"张玉虎"},{"authorName":"周小红","id":"ced6666a-0e9c-43fe-815a-c3726278f5df","originalAuthorName":"周小红"},{"authorName":"强赟华","id":"e76f3cff-1049-47d4-9e09-1d763d6fdb7e","originalAuthorName":"强赟华"},{"authorName":"郭文涛","id":"3f6ad179-8879-40d2-bbc8-8b62f46381de","originalAuthorName":"郭文涛"},{"authorName":"郭应祥","id":"b005d056-d8f0-4315-8c9c-6dbca5b70007","originalAuthorName":"郭应祥"},{"authorName":"方永得","id":"a56b0fac-0453-43a9-ae0b-ee0e8259c834","originalAuthorName":"方永得"}],"doi":"","fpage":"282","id":"781d98cc-83de-4921-a3a3-e8dcdd18a745","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"610f5b1e-126e-498e-8be2-a835d93ac77d","keyword":"形状驱动效应","originalKeyword":"形状驱动效应"},{"id":"4a5608a9-0cc8-4621-b1a7-9a0611b4d7ed","keyword":"尼尔逊能级","originalKeyword":"尼尔逊能级"},{"id":"c3b3ee58-ffce-464b-920a-1cbf306715e5","keyword":"跃迁电四极矩","originalKeyword":"跃迁电四极矩"},{"id":"c96e667b-c8c4-4fa9-b965-be46f45b10c4","keyword":"约化跃迁概率","originalKeyword":"约化跃迁概率"},{"id":"55273c51-af41-4e19-9783-f37eec5f611a","keyword":"反常带交叉","originalKeyword":"反常带交叉"}],"language":"zh","publisherId":"yzhwlpl200904002","title":"双核~(174)Re中的准粒子形状驱动效应","volume":"26","year":"2009"}],"totalpage":16,"totalrecord":157}