欢迎登录材料期刊网

材料期刊网

高级检索

通过调整反应体系中Ti、 C及B之间的原子摩尔比, 采用超重力下燃烧合成工艺, 制备出TiB2系列摩尔分数的TiC-TiB2复合陶瓷。利用场发射扫描电镜(FESEM)观察了复合陶瓷微观组织, 研究了TiB2成分对复合陶瓷力学性能的影响。结果表明: 随着TiB2摩尔含量增加, 陶瓷基体逐渐从TiC球晶组织转化为TiB2片晶组织, 在TiB2摩尔分数为50%时, 可获得细晶乃至超细晶TiC-TiB2复合陶瓷, 而且残留于基体上的α-Al2O3夹杂量也最低。陶瓷相对密度、 Vickers硬度与弯曲强度均在50%TiB2(摩尔分数, 下同)时呈现最大值, 而陶瓷断裂韧性则在66.7% TiB2时出现最高值。陶瓷断裂模式为TiC穿晶断裂与TiB2沿晶断裂的混合模式, 且随TiB2摩尔分数增加至66.7%, TiC穿晶断裂倾向显著减弱而TiB2沿晶断裂倾向明显增强。TiC-TiB2细晶及超细晶凝固组织的获得使TiC-50%TiB2复合陶瓷在小尺寸TiB2片晶诱发的裂纹偏转、 裂纹桥接及片晶拔出增韧机制作用下, 具有最高的弯曲强度及较高的断裂韧性。

By changing the mole ratio of Ti, C and B in primary reaction system, TiC-TiB2 composite ceramic with different TiB2 mole content were prepared by combustion synthesis in high-gravity field. The microstructure of composites was characterized by FESEM. The influence of the TiB2 composition on the mechanical properties of composite ceramic was studied. The results indicate that the matrix of TiC-TiB2 composite ceramics transforms from TiC grains to TiB2 platelets with increasing TiB2 mole content, moreover, the fine-grained microstructures and even ultrafine-grained microstructures are achieved in TiC-50 %TiB2, while volume fraction of α-Al2O3 inclusions in the ceramic also reaches the lowest value. The relative density, Vickers hardness and flexural strength of ceramics simultaneously reach the maximum values as the mole content of TiB2 is 50% in the ceramic, whereas the maximum fracture toughness is achieved in TiC-66.7%TiB2. FESEM fracture morphologies of the ceramics show that intercrystalline fracture is enhanced while transgranular fracture is weakened inversely with increasing mole content of TiB2 to 66.7%. FESEM crack propagation paths of TiC-TiB2 composite ceramics show that the highest flexural strength is achieved in TiC-50%TiB2 composite ceramic due to both the achievement of solidified fine-grained and ultrafine-grained microstructures and the presence of intensive toughening mechanisms of crack deflection, frictionally crack-bridging and pull-out by a large number of fine TiB2 platelets.

参考文献

[1] Zhao H, Cheng Y. Formation of TiB. - TiC composites by reactive sintering[J].Ceram Int, 1999, 25(4): 353-358.
[2] 益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009.
[3] Vallauri D, Arias I C, Adrian A. TiC - TiBz composites: A review of phase relationships, processing and properties[J]. J Eur Ceram Soc, 2008, 28(8): 1697-1713.
[4] Zhao Z M, Zhang L, Song Y G, et al. Microstructures and properties of large bulk solidified TiC - TiBz composites prepared by combustion synthesis under high gravity [J].Scripta Materialia, 2009, 61- 281-284.
[5] 潘传增,张龙,赵忠民,等.超重力下燃烧合成TiB2一TiC共晶复合陶瓷研究[J].复合材料学报,2010,27(1):109-117.
[6] Vallauri D, Shcherbakov V A, Khitev A V. Study of structure formation in TiC - TiBz - MexOy ceramics fabricated by SHS and densification [J]. Acta Materialia, 2008, 56: 1380-1389.
[7] Li W J, Tu R, Goto T. Preparation of direetionally solidified TiBz - TiC eutectic composites by a floating zone method[J].Mater Lett, 2006, 60(6): 839-843.
[8] AZou B L, Shen P, Gao Z M, et al. Combustion synthesis of TiC-- TiBz composites with hypoeutectic, eutectic and hypereutectic microstructures [J]. J Eur Ceram Soc, 2008, 28(11) : 2275-2279.
[9] 周玉,雷廷权.陶瓷材料学[M].第2版.北京:科学出版社,2004.
[10] Courtney T H. Mechanical behavior of materials [M]. New York: McGraw-Hill Education, 1990.
[11] 贾德昌,宋桂明.无机非金属材料性能[M].北京:科学出版社,2008.
[12] 龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
[13] Faber K T, Evans A G. Crack deflection process, I , Theory[J]. ActaMetall, 1983, 31: 565-576.
[14] FaberK T, Evans A G. Crack deflection process: If, Experiments[J]. ActaMetall, 1983, 31: 576-584.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%