欢迎登录材料期刊网

材料期刊网

高级检索

结合实验研究,分析了碳合金化对高温钛合金显微组织、高α+β相区、时效过程中α2和硅化物析出的影响机制及其碳化物的稳定性.α+β相区再结晶,碳化物主要在β转变组织中析出以及碳化物的百分数取决于初生α(αp)体积分数;β相区热处理,碳化物的析出阻碍β晶粒的长大.碳的加人延缓αp体积分数随温度的变化速度,扩大高温钛合金的高α+β相区;同时降低αp相Al的浓度,增加β转变组织中Al和Mo的浓度,导致αp相内α2颗粒直径逐渐减小,颗粒间距增大.β相与碳化物之间的包析反应是碳化物溶解的主要动力.

参考文献

[1] Luqefing G .Property optimization through microstructural control in titanium and aluminum alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1999,263:117.
[2] Oikawa H;Oomori T .Steady state deformation characteristics of α-Ti-Al solid solutions[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1988,104:125.
[3] Es-souni M .Primary,secondary and anelastic creep of a high temperature near a-Ti alloy Ti6242Si[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32:285.
[4] Welsch G;Bunk W .Deformation modes of the a-phase of Ti-6Al-4V as a function of oxygen concentration and aging temperature[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1982,13:889.
[5] Li Y G;Blenkinsop P A;Loretto M H .Effect of carbon and oxygen on microstructure and mechanical properties of Ti-25V-15Cr-2Al(wt%)alloys[J].Acta Materialia,1999,47:2889.
[6] 金云学,曾松岩,王宏伟.Ti-15Al-7C合金热处理过程中碳化物形态变化研究[J].稀有金属材料与工程,2002(05):358-362.
[7] Chen L H;Blenkinsop P A .Effects of boron,carbon and silicon additions on microstructure and properties of a Ti-15Mo based titanium alloy[J].Materials Science and Technology,2001,17:573.
[8] Li Y G;Loretto M H;Rugg D .Effect of heat treatment and exposure on microstructure and mechanical properties of Ti-25V-15Cr-2al-0.2C(wt%)[J].Acta Materialia,2001,49:3011.
[9] Cam G;Flower H M;West D R F .Constitution of Ti-Al-C alloys in temperature range 1250~750℃[J].Mater Sei Technol,1991,7:505.
[10] zhang S Z;Gao Y;Yang R .Micrestructural evolution of Ti-5.6Al-4.8Sn-2Zr-1Mo-O.35Si-0.7Nd titanium alloy with carbon additions[J].Journal of Materials Science and Technology,2006,22(05):616.
[11] zhang S Z;Li G P;Yang R .Alloying elements characterizationin a Ti-5.6Al-4.8Sn-2Zr-1 Mo-0.35Si-1 Nd titanium alloy by carbon addition[J].J Univer Sei Technol B,2005,12:252.
[12] 张尚洲,王波,刘子全,高原,杨锐.碳对高温钛合金Ti-60组织和性能的影响[J].材料研究学报,2007(04):433-438.
[13] Weinem D;Kuimpfert J;Petters M .Processing window of the near-(-titanium alloy TIMETAL-1100 to produce a fine-grained β-structure[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,206:55.
[14] Neal D F.in Titanium science and technology[M].Oberurael,Deutsche Gesellschaft far Metsllkunde,1985:2419.
[15] Scanlon J V;Chambers G J G.In the science,technology and application of titanium[M].New York:Pergamon Press,1970:82.
[16] Ouchi C;lizumi H;Mitao S .Effects of ultra-high purification and addition of interstitial elements on properties of pure titanium and titanium alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1998,243:186.
[17] Zhallg S Z;Li G P;Yang R .Effect of carbon on upper(α+β)phase field of Ti-5.6Al-4.8Sn-2.0Zr-1Mo-O.34Si-0.7Nd titanium alloy[J].Mater Sci Technel,2004,20:167.
[18] Rakaehandza C;Singh A K;Sarma G M K .Microstructural characterization of near-a titanium alloy Ti-6Al-4Sn-4Zr-0.70Nb-0.50Me-0.40Si[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1993,24:1273.
[19] Woodfield A P;Postans P J;Loretto M H .The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S[J].Acta Materialia,1988,36:507.
[20] Ltltjering G;Weissmann S .Mechanical.properties of age-hardened titanium-aluminum alloys[J].Acta Materialia,1970,18:785.
[21] Rakachandra C;Siwh A K .Age-hardening behavior of titanium alloy Ti-6Al-5Zr-0.5Me-0.25Si[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1993,24:763.
[22] Worth B D;Jones J W;Allison J E .Creep deformation in near-(TiAI:II.Influence of carbon on creep deformation in Ti-49Al-IV-0.3C[J].Metall Mater Tram A,1995,26:2961.
[23] Zhang S Z;Li G P;Yang R .Effect of carbon and aging treatment Oil precipitation of ordered a2 in Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2005,408:290.
[24] 碳含量对Ti-60合金时效过程中硅化物的影响[J].材料研究学报,2005(05):499-505.
[25] Sridhar G;Sarma D S .Structure and properties of a near-α titanium alloy after β solution treatment and aging at 625℃[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1988,19:3025.
[26] Worth B D;Jones J W;Allison J E .Creep deformation in near-γ TiAl Part I.Influence of micrnstmcture on creep defommtion in Ti-48Al-1V[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1995,26:2947.
[27] 张尚洲,王青江,刘羽寅,杨锐.Ti-60合金双态组织时效过程中碳化物的溶解行为[J].金属学报,2005(09):969-973.
[28] Gundel D B;Wawner F E .Interfacial reaction kinetics of coated SiC fibers with various titanium alloys[J].Seripta Metall,1991,25:437.
[29] Banmann S F;Brindley P K;Smith S D .Reaction zone microstructure in a Ti3Al+Nb/SiC composite[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21:1559.
[30] Villars P;Prince A;Okamoto H.Handbook of temary phase diagrams[M].Materials Park,Ohio,ASM Intemational,1997:2906.
[31] Hewitt P;Butler E P .Mechanisms and kinetics of θ' dissolution in Al-3%Cu[J].Acta Metallurgica,1984,34:1163.
[32] Pasparakis A;Brown L C .Dissolution kinetics of grain boundary allotriomorphs[J].Acta Metallurgica,1973,21:1259.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%