欢迎登录材料期刊网

材料期刊网

高级检索

采用硫酸酸解微晶纤维素(MCC)的方法制备了纳米微晶纤维素(NCC),并将其作为填料部分替代白炭黑(SiOz),制备了纳米微晶纤维素一白炭黑/天然橡胶((NCC—SiO。)/NR)复合材料。结果表明,NCC的加入在保持SiO2增强NR基本力学性能的同时,使压缩永久变形由11.4%下降到5.9%,压缩疲劳生热则由19.9℃下降至10.6℃。当NCC与sioz的质量比为10:20时,(NCC—SiO2)/NR复合材料的一级和六级龟裂屈挠次数分别由Si02/NR的2.5×10、6.0×10。次提高到7.0×10、1.2×10次;老化性能也优于Si02/NR复合材料,老化后拉伸强度、撕裂强度及硬度分别上升了40%、21%和25%,永久变形下降了25%,拉伸强度和断裂伸长率则基本不变;动态力学性能测试结果表明,NCC与SiOz的质量比为0:30-20:10时,复合材料0℃的胶料抗湿滑性能tan占基本不变,而60℃胶料的滚动阻力tan艿却由0.060下降至0.049。SEM结果表明:NCC—SiO2在NR的分散性优于SiO2,与NR基体界面结合更加紧密。

Nanocrystalline cellulose (NCC) was prepared from hydrolysis of microcrystalline cellulose (MCC) using sulfuric acid. NCC can be used as filler partialy to replace SiO2 and utilized in the preparation of (NCC- SiO2 )/NR (natural rubber) composites. The results show that the composites can not only maintain basic mechanical properties, but also decrease heat build-up from 19.9℃ to 10.6 ℃ and permanent set from 11.4% to 5.9%. When the mass ratio was added with NCC : SiO2 =10 : 20, the grade one and six flex cracking times of (NCC - SiO2 )/NR composite material increase from 2.5 × 104 and 6.0×104 (filled by SiO2 ) to 7.0 × 104 and 1.2× 105 , respectively. Aging performance is also superior to SiO2/NR composite materials. After hot air aging, the tensile strength, tear strength and hardness of the composite materials after aging increase by 40 %, 21 % and 25 %, respectively, and the permanent deformation droppes by 25 %, while tensile strength and elongation at break remain basically unchanged. Dynamic mechanical performance test shows that when the mass ratio of NCC to SiO2 is from 0 : 30 to 20 : 10, the rolling resistance of rubber tan8 at 0 ℃ keep almost constant, but the skid resistance of rubber tan8 at 60 ℃ droppes from 0. 060 to 0. 049. The results of SEM photographs prove that better dispersion and stronger interfacial interaction were achieved in NR matrix filled by NCC - SiO2 than by SiO2.

参考文献

[1] 焦志民, 白英杰, 孙 玉, 等. 白炭黑对轮胎胶料性能的影响 [J]. 轮胎工业, 2008, 28(9): 548-550.
[2] Mazlina M K, Ibrahim I, Clarke J. Increasing the interaction between starch and the rubber matrix by coupling agent addition [J]. Journal of Rubber Research, 2010, 13(3): 139-161.
[3] Qi Q, Wu Y P, Tian M, et al. Modification of starch for high performance elastomer [J]. Polymer, 2006, 47(11): 3896-3903.
[4] Liu C, Shao Y, Jia D M. Chemically modified starch reinforced natural rubber composites [J]. Polymer, 2008, 49(8): 2176-2181.
[5] 林 路, 古 菊, 谢 东, 等. 改性淀粉/丁苯橡胶复合材料的制备及性能研究 [J]. 复合材料学报, 2010, 27(2): 16-23.
[6] 黄 远, 万怡灶, 扈 立, 等. 天然细菌纤维素增强不饱和聚酯树脂复合材料的制备及性能 [J].复合材料学报, 2008, 25(6): 140-145.
[7] Bondeson D, Mathew A, Oksman K, et al. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J]. Cellulose, 2006, 13: 171-180.
[8] Cao X D, Dong H, Li C M. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne folyurethane [J]. Biomacromolecules, 2007, 8(3): 899-904.
[9] Ten E, Turtle J, Bahr D, et al.Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites [J]. Polymer, 2010, 51(12): 2652-2660.
[10] Favier V, Chanzy H, Cavaille J Y. Polymer nanonanocomposites reinforced by cellulose whiskers [J]. Macromolecules, 1996, 28: 6365-6367.
[11] Nair K G, Dufresne A. Crab shell chitin whisker reinforced natural rubber nanocomposites 1: Processing and swelling behaviour [J]. Biomacromolecules, 2003, 4(3): 657-665.
[12] Nair K G, Dufresne A. Crab shell chitin whisker reinforced natural rubber nanonanocomposites 2: Mechanical behaviour [J]. Biomacromolecules, 2003, 4(3): 666-674.
[13] 古 菊, 李雄辉, 罗远芳, 等. 天然微晶纤维素晶须补强天然橡胶的研究 [J]. 高分子学报, 2009(7): 595-598.
[14] Bai W, Li K C. Partial replacement of silica with microcrystalline cellulose in rubber composites [J]. Nanocomposites Part A: Applied Science and Manufacturing, 2009, 40: 1597-1605.
[15] Nair K G, Dufresne A, Gandini A, et al. Crab shell chitin whiskers reinforced natural rubber nanocomposites 3: Effect of chemical modification of chitin whiskers [J]. Biomacromolecules, 2003, 4(6): 1835-1842.
[16] Bendahou A, Kaddami H, Dufresne A. Investigation on the effect of cellulosic nanoparticles'morphology on the properties of natural rubber based nanocomposites [J]. European Polymer Journal, 2010, 46: 609-620.
[17] Samir M, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers: Their properties and their application in nanocomposite field [J]. Biomacromolecules, 2005, 6(2): 612-626.
[18] Eichhorn S J, Dufresne A, Aranguren M. Review: Current international research into cellulose nanofibres and nanocomposites [J]. Journal of Materials Science, 2010, 45(1): 1-33.
[19] 章毅鹏, 朱长风, 桂红星, 等. 纳米晶纤维素补强天然橡胶的研究 [J]. 热带农业科学, 2008, 28(3): 16-19.
[20] Penelope P V, Julie C, Richard H, et al. Lycopene content of mini watermelon varieties grown at four locations [J]. HortScience, 2005, 40(4): 1091.
[21] 王 能, 丁恩勇, 程镕时. 纳米微晶纤维素表面改性研究 [J]. 高分子学报, 2006(8): 982-987.
[22] 任肖冬, 刘月娥, 庞桂林, 等. 哈密硅灰石制备白炭黑工艺的研究 [J]. 非金属矿, 2010, 33(2): 11-14.
[23] Wu Y P, Zhao W, Zhang L Q. Improvement of flex-fatigue life of carbon-black-filled styrene-butadiene rubber by addition of nanodispersed clay [J]. Macromolecular Materials and Engineering, 2006, 291(8): 944-949.
[24] Wolff S, Wang M J, Tan E H. Surface-energy of fillers and its effect on rubber reinforcement [J]. Kau-tschukund Gummi Kunststoffe, 1994, 47(17): 780-798.
[25] 刘 岚, 罗远芳, 贾德民, 等. 胶乳接枝插层法天然橡胶/蒙脱土/聚丙烯酸丁酯纳米复合材料结构与性能的研究 [J]. 高分子学报, 2006(3): 424-428.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%