欢迎登录材料期刊网

材料期刊网

高级检索

介绍了玻璃光学碱度的概念,讨论了玻璃光学碱度与三阶非线性光学极化率之间的变化规律,分析了二元硼酸盐、硅酸盐、锗酸盐、碲酸盐、钛酸盐玻璃系统中光学碱度与三阶非线性光学极化率之间变化的定性趋势和定量方程,总结了玻璃光学碱度的本质及其影响,对进一步研究不同玻璃系统中光学碱度与三阶非线性光学极化率之间定量关系的趋势进行了展望.

In this paper, the conception of optical basicity is introduced, the relationships between optical basicity and third-order nonlinear optical polarizability in glasses are discussed, the qualitative and quantitative relationships between optical basicity and third-order nonlinear optical polarizability are analyzed in binary borate, silicate,germanate, tellurite and titanate glasses. The nature and effects of optical basicity are concluded, it is also prospected that the further researches possibly focus on the quantitative relationships between optical basicity and third-order nonlinear optical susceptibility in different glass systems.

参考文献

[1] Lewis GN .Acids and bases[J].Journal of the Franklin Institute,1938,226:293.
[2] Volf M B.Chemical approach to glass[M].New York:El-sevier Science Publisher Company,Inc,1984:83.
[3] Duffy J A;Ingram M D .Establishment of an optical scale for Lewis basicity in inorganic oxyacids,melten salts,and glasses[J].Journal of the American Chemical Society,1971,93:6448.
[4] Ingram MD .Optical basicities and structural dynamics in glassy materials[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,1997(0):42-49.
[5] Abdel-Baki M;El-Diasty F;Abdel Wahab F A .Optical characterization of xTiO_2-(60-x) SiQ_2-40Na_2O glasses:Ⅱ.Absorption edge,Fermi level,electronic polarizability and optical basicity[J].Optics Communications,2006,261:65.
[6] Saddeek, YB;Shaaban, ER;Moustafa, ES;Moustafa, HM .Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3-Li2O-B2O3 glasses[J].Physica. B, Condensed Matter,2008(13/16):2399-2407.
[7] Zhao, XY;Wang, XL;Lin, H;Wang, ZQ .A new approach to estimate refractive index, electronic polarizability, and optical basicity of binary oxide glasses[J].Physica, B. Condensed Matter,2008(13/16):2450-2460.
[8] Zhao XY;Wang XL;Lin H;Wang ZQ .Correlation among electronic polarizability, optical basicity and interaction parameter of Bi2O3-B2O3 glasses[J].Physica, B. Condensed Matter,2007(1/2):293-300.
[9] Svecova B et al.Ion-exchanged optical waveguides fabricated in novel Er~(3+) and Er~(3+) /Yb~(3+)-doped silicate glasses:Relations between glass composition,basicity and waveguide properties[J].Materials Science and Engineering B,2008,149:177.
[10] Bei J;Qian G;Liang X et al.Optical properties of Ce~(3+)doped oxide glasses and correlations with optical basicity[J].Materials Research Bulletin,2007,42:1195.
[11] Chi G;Zhou D;Song Z et al.Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses[J].Optical Materials,2009,31:945.
[12] Guorong Chen;Stefania Baccaro;Martin Nikl .The Red-Shift of Ultraviolet Spectra and the Relation to Optical Basicity of Ce-Doped Alkali Rare-Earth Phosphate Glasses[J].Journal of the American Ceramic Society,2004(7):1378-1380.
[13] Duffy J A .A common optical basicity scale for oxide and fluoride glasses[J].Journal of Non-Crystalline Solids,1989,109(01):35.
[14] 魏锡文;李宁;张琳 .Na_2O-P_2O_5 玻璃的结构和光学碱度[J].化学研究与应用,1993,5(02):68.
[15] 张琳,魏锡文.含钛玻璃光学碱度的测量[J].理化检验化学分册,2000(01):31-32.
[16] 张木,王铁林,常勇,刘波,陈宏.二元玻璃光学碱度和氧离子电极化率的研究[J].沈阳化工学院学报,2008(01):22-24,34.
[17] Nasu H .Compositional design of glasses with large second-and third-order optical nonlinearity[J].Journal of the Ceramic Society of Japan,2002,110(09):789.
[18] Terashima K;Hashimoto T;Uchino T et al.Structure and nonlinear optical properties of Sb_2O_3-B_2O_3 binary glasses[J].Journal of the Ceramic Society of Japan,1996,104(11):1008.
[19] Terashimak;Shimoto T H;Yoko T .Structure and nonlinear optical properties of PbO-Bi_2O_3-B_2O_3 glasses[J].Physics and Chemistry of Glasses,1997,38(04):211.
[20] Terashima K.;Yoko T.;Kim SH. .NONLINEAR OPTICAL PROPERTIES OF B2O3-BASED GLASSES - M(2)O-B2O3 (M=LI, NA, K, RB, CS, AND AG) BINARY BORATE CLASSES[J].Journal of the American Ceramic Society,1995(6):1601-1605.
[21] Terashima K;Hashimoto T;Yoko T .Nonlinear optical properties of B_2O_3 Based glasses;Binary Ag_2O-B_2O_3 and ternary AgX-Ag_2OB_2O_3 (X = Cl,Br and I) glasses[J].Physics and Chemistry of Glasses,1996,37(04):129.
[22] Terashima K;Uchino T;Hashimoto T et al.Structure and nonlinear optical properties of BaO-TiO_2-B_2O_3 glasses[J].Journal of the Ceramic Society of Japan,1997,105(04):288.
[23] Dimitrov V;Kim S H;Yoko T et al.Third harmonic generation in PbO-SiO_2 and PbO-B_2O_3 glasses[J].Journal of the Ceramic Society of Japan,1993,101(01):59.
[24] S HAZARIKA;S RAI .Structural, optical and non-linear investigation of Eu~(3+): Al(NO_3)_3-SiO_2 sol-gel glass[J].Bulletin of Materials Science,2004(3):273-279.
[25] Nasu H;Matsuoka J;Kamiya K .Second-and third-order optical non-linearity of homogeneous glasses[J].Journal of Non-Crystalline Solids,1994,178:23.
[26] Vesselin Dimitrov;Takayuki Komatsu .Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,1999(2/3):160-179.
[27] Qi J;Xue DF;Ratajczak H;Ning G .Electronic polarizability of the oxide ion and density of binary silicate, borate and phosphate oxide glasses[J].Physica, B. Condensed Matter,2004(1/4):265-269.
[28] J. QI;A D. F. XUE;G. L. NING .Relationship between the third order nonlinear optical susceptibility and the density of the binary borate glasses[J].European Journal of Glass Science and Technology, PartB. Physics and Chemistry of Glasses,2004(6):361-362.
[29] Qi J;Ning G;Sun T .Relationships between molar polari-sability,molar volume and density of binary silicate,borate and phosphate glasses[J].Physics and Chemistry of Glasses,2007,48(06):354.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%