欢迎登录材料期刊网

材料期刊网

高级检索

制备了Cu-10Cr和Cu-10Cr-0.4Zr合金,并经冷变形形成了原位复合材料,观察了Zr的添加对合金铸态组织、复合材料的纤维形貌,研究了Zr的添加和冷变形率对拉伸强度以及导电率的影响.研究表明,在Cu-10Cr合金中添加的0.4%Zr,Cr析出相的直径由15~80μm细化到10~20μm;在相同的冷拔应变下,Cu-10Cr-0.4Zr复合材料较Cu-10Cr材料具有了更高的基体晶格阻力、更加细小均匀的纤维相以及纤维间距,使得Cu-10Cr-0.4Zr复合材料的强度更高.当冷拔应变达到6.2时,Cu-10Cr-0.4Zr原位复合材料抗拉强度高达1089MPa,而Cu-10Cr材料的抗拉强度仅为887MPa.在相同冷拔应变下,Cu-10Cr材料的导电率比Cu-10Cr-0.4Zr材料中的导电率略高.随着材料冷拔应变的增加,决定复合材料电阻率的基体材料内位错散射电阻转变成界面散射电阻,复合材料的电导率逐渐下降.

The Cu-10Cr alloy, Cu-10Cr-0. 4Zr alloy and the in-situ composite based on the alloy were prepared. Microstructures of as-cast, evolution of filaments, strength and electrical conductivity of Cu-10Cr and Cu-10Cr-0. 4Zr in-situ composites have been investigated. The results show that the addition of 0. 4wt%Zr in the Cu-10wt%Cr gives birth to smaller as-cast Cr dendrites, their diameters were reduced from 15-80μm to 10-20μm;at the same draw ratio, Cu-10Cr-0. 4Zr composites have larger intrinsic friction stress, finer filaments and spacing between the filaments than Cu-10Cr composites, and the ultimate strength of Cu-10Cr-0. 4Zr composites reaches 1089MPa at draw ratio of η=6. 2, however that of the same processed Cu-10Cr is only 887MPa; and at the same draw ratio, the electrical conductivity of Cu-10Cr composites is little higher than that of Cu-10Cr-0. 4Zr composites, the decreasing electrical conductivity is caused by the transition of resistivity contribution from dislocation scattering to interface scattering in the Cu matrix.

参考文献

[1] Biselli C;Morris D G .[J].Acta Materialia,1996,44:493-504.
[2] Raade D;Hangen U .[J].Acta Materialia,1996,44:953-961.
[3] He W X;Wang E D;Hu L X et al.[J].Journal of Materials Processing Technology,2008,208:205-210.
[4] Hong S I;Hill M A .[J].Scripta Metallurgica,2000,42:737-742.
[5] Song J S;Kim H S .[J].Journal of Materials Processing Technology,2002,130-131:272-277.
[6] Zhang D L;Mihara K;Takakura K et al.[J].Acta Materialia,1996,44:953-961.
[7] Liu Q;Zhang X .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2006,37:3233-3238.
[8] Sun Z B;Guo J;Song X P et al.[J].Journal of Alloys and Compounds,2008,455:243-248.
[9] 张俊超,刘平,田保红,董企铭,任风章.Cu-15%Cr形变原位复合材料的组织与性能[J].热加工工艺,2007(04):11-13.
[10] Verhoeven J D;Dowing H L;Gibson E D .[J].Journal of Applied Physics,1989,65:1293-1301.
[11] Massalskit T.Binary Alloys Phase Diagrams[M].USA:ASM International,1990
[12] Moriss D G;Morsis M S .[J].Scripta Metallurgica,2008,58:838-841.
[13] Zhang L;Meng L .[J].Scripta Metallurgica,2005,52:1187-1191.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%