研究了含非均匀界面相纤维增强复合材料的宏观等效传热性能.将热导率沿径向连续变化的界面相离散为多个热导率均匀的同心圆柱层,采用广义自洽法和复变函数理论,推导了复合材料宏观等效热导率的解析递推公式,并由递推公式给出了均匀界面相和理想零厚度界面的封闭公式.理想零厚度界面复合材料的热导率与已有理论结果一致.理想零厚度界面和非均匀界面相模型的计算结果与实验数据比较表明,当纤维体积分数较小时,2种模型的预测结果与实验数据吻合均较好,当体积分数较大时,与实验数据相比,非均匀界面相模型的精度大大高于理想零厚度界面模型的精度.本文中给出的递推公式亦可用于计算多涂层纤维增强复合材料的热导率.
参考文献
[1] | Carson J K,Lovatt S J,Tanner D J,Cleland A C.An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous material using finite element simulations[J].International Journal of Refrigeration,2003,26(8):873-880. |
[2] | Tzou D Y.A universal model for the overall thermal conductivity of porous media[J].Journal of Composite Materials,1991,25(8):1064-1084. |
[3] | Miloh T,Benveniste Y.A generalized self-consistent method for the effective conductivity of composites with ellipsoidal inclusions and cracked bodies[J].Journal of Applied Physics,1988,63(3):789-796. |
[4] | 程耿东,刘书田.单向纤维复合材料导热性预测[J].复合材料学报,1996,13(1):78-85.Cheng Gengdong,Liu Shutian.Prediction of thermal conductivity of unidirectional fiber reinforced composites[J].Acta Materiae Compositae Sinica,1996,13(1):78-85. |
[5] | 戴兰宏,黄筑平,王仁.N-层涂层夹杂体复合材料有效模量显式表达[J].高分子材料科学与工程,2000,16(3):17-19.Dai Lanhong,Huang Zhuping,Wang Ren.Explicit expression of the effective moduli of N-layered inclusion baaed composites[J].Polymer Materials Science and Engineering,2000,16(3):17-19. |
[6] | Mercier S,Molinari A,EI Mouden M.Thermal conductivity of composite material with coated inclusions:Applications to tetragonal array of spheroids[J].Journal of Applied Physics,2000,87(7):3511-3519. |
[7] | Lu Shih-Yuan,Song Jiann-Long.Effective conductivity of composites with spherical inclusions:Effect of coating and detachment[J].Journal of Applied Physics,1996,79 (2):609-618. |
[8] | Lee Yung-Ming,Yang Ruey-Bin,Gau Song-Sheun.A generalized self-consistent method for calculation of effective thermal conductivity of composites with interfacial contact conductance[J].International Communications in Heat and Mass Transfer,2006,33(2):142-150. |
[9] | Bohm H J,Nogales S.Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions[J].Composites Science and Technology,2008,68(5):1181-1187. |
[10] | 何陵辉,成振强,刘人怀.含非均匀界面相碳/碳纤维复合材料等效热传导性质的研究[J].应用数学和力学,1997,18(3):193-201.He Linghui,Cheng Zhenqiang,Liu Renhuai.Investigation on the effective conductivities of carbon/carbon fiber composites with inhomogeneous interpase[J].Applied Mathematics and Mechanics,1997,18(3):193-201. |
[11] | Jiang C P,Cheung Y K.An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites[J].International Journal of Solids and Structures,2001,38 (28/29):4777-4796. |
[12] | 戴兰宏,黄筑平,王仁.广义自洽Mori-Tanaka模型及涂层夹杂体复合材料的有效模量[J].固体力学学报,1999,20(3):187-194.Dai Lanhong,Huang Zhuping,Wang Ren.A generalized self-consistent Mori-Tanaka model for predicting the effective moduli of coated inclusion based composites[J].Acta Mechanica Solida Sinica,1999,20(3):187-194. |
[13] | Hasselman D P H,Johnson L F.Effective thermal conductivity of composites with interfacial thermal barrier resistance[J].Journal of Composite Materials,1987,21(6):508-515. |
[14] | Pilling M W,Yates B,Black M A.Thermal conductivity of carbon fibre-reinforced composites[J].Journal of Materials Science,1979,14(6):1326-1338. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%