欢迎登录材料期刊网

材料期刊网

高级检索

本文通过XRD、SEM等分析,从显微结构方面研究了硼酸对熔融石英烧结及其晶化的影响.结果表明硼酸在本实验范围内促进烧结,而且当硼酸含量小于0.5wt%时,随硼酸含量的增加,效果越明显;当硼酸含量为0.5wt%至1.0wt%时,变化不大;当硼酸含量大于1.0wt%时,烧结的驱动力大大提高,促进烧结的效果也更加明显.研究还发现,添加硼酸同时也促进了熔融石英的晶化,而且随硼酸含量的增加,晶化越严重,其结晶度成指数增长.当硼酸含量小于1.0wt%时,结晶相为低温方石英相;当硼酸含量高于1.0wt%时,结晶相以低温方石英相为主,同时还生成新的结晶相(BSi)O_2和Si_(30.72)B_(1.28)O_(64).

This article has studied the influence of the boric acid on sintering and crystallization of the fused silica. The microstructure of the sintered fused silica was studied by XRD, SEM. The results showed that the sinter ability of the fused silica could be improved by the addition of boric acid. When the boric acid content is smaller than 0.5wt%,with the boric acid content's increase, the effect is obvious; When the boric acid content is between 0.5wt% and 1.0wt%, the sinterability of the fused silica changes little; When the boric acid content is greater than 1.0wt%, the effect is much more obvious. It was also found that adding boric acid promoted the crystallization of fused silica. As the boric acid content's increasing, the crystallization is more serious, and its crystalline grows at an exponential rate. When the boric acid content is not more than 1.0wt%, the crystalline phase is all the low-temperature cristobalite phase; when boric acid was higher than 1.0wt%, the crystalline phase is mainly low cristobalite, but it also contains a little other new phase" (BSi)O_2" and "Si_(30.72)B_(1.280O_(64)".

参考文献

[1] 高冬云,潘伟.提高熔融石英陶瓷力学性能的方法[J].现代技术陶瓷,2006(01):32-34,48.
[2] 袁向东;崔文亮;刘文化 .熔融石英陶瓷的开发及应用[J].玻璃,1993,26(03):45-46.
[3] 吕锋,吴翠珍,王瑞琍.熔融石英陶瓷的性能及其应用[J].现代技术陶瓷,2005(03):37-40.
[4] 李玉书.熔融石英的石英陶瓷研究[J].中国陶瓷,1994(01):6-11.
[5] 闫法强,陈斐,沈强,张联盟.放电等离子烧结技术制备熔融石英陶瓷[J].硅酸盐通报,2007(02):362-365,381.
[6] 郑仕远,罗永明,李荣缇.氮化硅对石英陶瓷性能的影响[J].佛山陶瓷,2000(01):9-10.
[7] 颜汉军.石英陶瓷烧结过程中氮化硅的影响[J].山东陶瓷,2007(01):19-20.
[8] 李友胜,韩志强,李楠.外加剂对熔融石英陶瓷烧结性能的影响[J].耐火材料,2004(05):334-335,346.
[9] 卜景龙,王志发,窦光涛,田月超,李浩满.熔融石英陶瓷材料的晶化抑制研究[J].稀有金属材料与工程,2007(z1):357-360.
[10] Hurst VJ;Schroeder PA;Styron RW .Accurate quantification of quartz and other phases by powder X-ray diffractometry[J].Analytica chimica acta,1997(3):233-252.
[11] 徐曙,潘麟章,田丰,邬学文.氧化硼玻璃的11B变温核磁共振研究[J].物理学报,1988(11):1866-1869.
[12] 崔国文.固体材料物理化学丛书:表面与界面[M].北京:清华大学出版社,1990:168-175.
[13] 理查德 J.布鲁克;清华大学新型陶瓷与精细工艺国家重点实验室.陶瓷工艺(Ⅱ)[M].北京:科学出版社,1996:93-97.
[14] Burke J E;Lay K W;Prochazka S.[A].New York:Plenum,1980:417.
[15] Kingery W D;Narasimban M D .Densification during sintening in the presence of a liquid phaseⅡ experimental[J].Journal of Applied Physics,1959,30:307-310.
[16] Hiemenz P C.Principles of colliod and surface chemistry[M].New York,USA:Marcel Dekker,Inc:235-238.
[17] Petzow G;Kaysser W A.[A].gesellschaft,1980:269-278.
[18] 温广武,雷廷权,周玉.不同形态石英玻璃的析晶动力学研究[J].材料科学与工艺,2001(01):1-5.
[19] Leko V K;Komarova L A .Influence of water vapor on the crystallization of quartz glass[J].Inorg Materials,1975,11:1753-1756.
[20] Wagstaff F E;Richards K J .Kinetics of stoichometrec SiO_2 glass in H_2O Atmospheres[J].Journal of the American Ceramic Society,1966,49(03):118-121.
[21] Zhu, Y;Pan, YB;Xu, H;Guo, JK .Investigation of the devitrification and microwave penetrating properties of fused silica[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2009(13):785-790.
[22] Yu A;Shmykov S V;Mjakin I V et al.Electron beam initiated grafting of methacryloxyptopyl-trimethoxysilane to fused silica glass[J].Applied Surface Science,2009,255:6391-6396.
[23] C.S. Alexander;L.C. Chhabildas;W.D. Reinhart;D.W. Templeton .Changes To The Shock Response Of Fused Quartz Due To Glass Modification[J].International journal of impact engineering,2008(12):1376-1385.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%